
 
Abstract— In this paper, the problem of finding the optimal 

collision free path for a mobile robot, the path planning problem, is 
solved using an advanced evolutionary algorithm called memetic 
algorithm. What is new in this work is a novel representation of 
solutions for evolutionary algorithms that is efficient, simple and also 
compatible with memetic algorithm. The new representation makes it 
possible to solve the problem with a small population and in a few 
generations. It also makes the genetic operator simple and allows 
using an efficient local search operator within the evolutionary 
algorithm. The proposed algorithm is applied to two instances of path 
planning problem and the results are available.  

Keywords— Path planning problem, Memetic Algorithm, 
Representation.

I. INTRODUCTION

he problem of finding optimal path between two points in 
a known and static environment with different walls or 
obstacles for motion of a mobile robot is considered as the 

problem of mobile robot path planning. The path is highly 
desirable to be optimal or near optimal with respect to time, 
distance or energy while it is collision free.  Distance is a 
commonly adopted criterion [5]. Path planning is usually 
carried out offline and considers existing knowledge about 
environment [3]. The best path is defined to be the path with 
the lowest cost which assumes the shortest collision free path 
in this paper and majority of similar works mentioned above. 

There have been some efforts for solving this problem 
using evolutionary algorithms. One of the main challenges 
when using an evolutionary algorithm for solving a real 
problem is to representing the problem at hand using 
evolutionary algorithm fundamentals. Candidate solutions 
should be coded as chromosomes and well defined genetic 
operations as well as a suitable penalty function should be 
designed.
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In earlier works like [1] and [2], the path is a set of 
consequent points in a grid and the chromosome is a fixed or 
variable length string of the distances or strongly connected 
locations. In [1], the cost of passing over each point is 
calculated based on repulsive potential field around the 
obstacles and an attractive potential field around the end point. 
In [3] each gene has a triple structure each triple consisting of 
an (x, y) position and an additional information ‘q’ for quality 
of terrain at that particular location. The q = 0 means a 
reachable position and q = 1 is a point inside an obstacle. A 
different approach is taken in [4] in which a gene specifies the 
next movement direction and distance. The main shortage of 
cited approaches is that they lead to some invalid solutions like 
paths that not reach to the end point. These solutions should be 
eliminated in each generation. Moreover the number of genes 
in a chromosome is large. In [5] these problems are not occur 
because the chromosome is a relatively small variable–length 
set of points in a grid those are connected consequently with 
straight piece lines. Some new operators are also used in [5] to 
modify solutions.  

In this paper a novel genetic representation of path 
planning problem and a suitable local search operation is 
proposed. The approach that is taken in this paper for coding is 
more similar to [5] except that allow to be a sub-path with 
specifiable shape between two points instead of a straight line 
and this shape is encoded in gene too. In addition, the 
chromosome length is fixed in contrast to [5]. This constrain 
simplifies the genetic operators [2].  

The evolutionary algorithm that is noticed is a fast and 
accurate one known as memetic algorithm [6,7,8,9,10].These 
algorithms allow chromosomes to improve (or grow up) 
throughout their life time. Memetic algorithms use local search 
methods to find local optimums i.e. a point with the best 
fitness value among its neighbor points. The memetic 
algorithm is faster and more accurate that a simple genetic 
algorithm for some reasons: first, local search methods can 
serve the genetic operators with solutions those are better in 
compare to randomly generated solutions. Moreover, genetic 
algorithms are not good hill-climbers and the combination of 
them with local search methods alleviates this problem [11]. 

The proposed algorithm is explained in the next section 
and the experimental results of applying this algorithm to some 
instances of path planning problem are available in section III.  

II. MEMETIC PATH PLANNER

In this section, proposed memetic algorithm for solving the 
path planning problem is described. The proposed 
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representation is described in the first subsection. The set of 
operations including crossover, mutation, local search, and 
selection are described in the second subsection. 

A. Structure of Chromosome and Gene 

In this paper, a novel representation is proposed, which has the 
following advantages. 

• The number of genes for a chromosome is small and 
fixed in contrast to variable-length representation that is 
used in some previous efforts. Moreover, it is 
independent from the size of the environment and the 
resolution of grid. These characteristics simplify the 
genetic operations.    

• Chromosomes that represent invalid paths are not 
produced (neither randomly nor as a product of genetic 
operators). By definition, an invalid path may not reach 
the end point, that may be occur in some chromosome 
coding proposed in some mentioned efforts, or the path 
can not be recovered from information encoded in the 
corresponding chromosome.  

In the proposed representation, each path is composed of a set 
of adjacent sub-paths. Each sub-path is represented by a gene 
and the entire path by a chromosome. In this representation, it 
is mandatory that all paths have the same number of sub-paths; 
therefore, the number of genes (the length of chromosome) is 
fixed. Each sub-path is represented by its start point, end point 
and a binary string that determines its shape. The start and end 
points of sub-paths can be anywhere in the grid, provided that 
the end point of each sub-path is the start point of the next sub-
path. In the binary string that represent the shape, ‘0’s indicate 
one unit of vertical movement in the grid and ‘1’s indicate one 
unit of horizontal movement. Based on the relative position of 
the start and end points of a sub-path, only one direction for 
vertical movement (either upward or downward) and one 
direction for horizontal movement (either left or right) is 
allowed in each sub-path. In fact, a sub-path is a set of 
horizontal and vertical movements toward its end point and no 
backward movement is allowed in sub-paths. As an example, 
Fig. 1a shows a sub-path with the start point at (0, 0), the end 
point at (1, 1) and the binary string ‘11011111000000001101’. 
In this sub-path the end point is on the upper right of the start 
point; therefore, each ‘0’ represents an upward movement and 
each ‘1’ represents a right movement. It is obvious that the 
number of horizontal and vertical movements is determined by 
the horizontal and vertical distance of the start and end point 
respectively and is independent of the shape of the sub-path. 
Therefore, for each pair of start and end points, the valid 
values for the binary string are the permutations of a fixed 
number of zeros and ones. Fig. 1b depicts a path with 3 sub-
paths and Fig. 2 shows the proposed chromosome structure. 

B. Cost Function 

As mentioned above, we assume that the robot environment is 
a known and static terrain and it is assumed that only 
topological information of the terrain is available. Therefore, 
the cost of passing over each point is known and we can 
calculate the cost of each path by adding the costs of its sub-
paths. The cost function associated with a two-dimensional 

terrain should obtain higher values for longer paths. Moreover, 
it could separate a path that goes over a wall from a path that 
does not. In this paper, we use cost function that assigns a cost 
of ‘1’ to each point on the floor and a cost value that is greater 
in orders of magnitude (i.e. 100000) to the points placed on a 
wall. Therefore a path has a much higher cost value if it passes 
over at least on wall. Otherwise, it has a cost value 
proportional to its length. The fitness value of each 
chromosome is the cost of its corresponding path multiplied by 
-1. 
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Fig. 1 (a) A sample sub-path. (b) A sample path with three sub-paths. 

C. Crossover and Mutation Operators 

In mutation operation proposed in this paper, a gene is mutated 
through changing its binary string, start point or end point. The 
binary string is simply mutated by exchanging a ‘0’ and a ‘1’. 
But if the start or end point is changed, of course the end point 
of the previous gene or the start point of the next gene will be 
changed respectively to provide connectivity of path and both 
mutated gene and its neighbor gene will get a new binary 
string. Two examples of mutation are depicted in Fig. 3a and 
Fig. 3b.   

Two-point crossover operation is also used. In this operation, a 
number of sub-paths are exchanged between two paths. Some 
modification should be down in exchanged sub-paths: the start 
or end point of some sub-paths should be changed to provide 
connectivity of sub-paths. In addition, the binary string of the 
sub-paths that their start or end points have been changed 
should be modified. An example of this operation is shown in 
Fig. 4. In this example the first two sub-paths are exchanged 
between two paths. The end point and the shape of the second 
sub-path are modified.   

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)                                        (b) 

Fig 3 (a) Mutation of the second sub-path’s end point. (b) Mutation 
of the second sub-path’s binary string. 
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End PointShapeStart Point …End PointShapeStart Point 

Gene n (sub-path n)…Gene 1(sub-path 1) 

Fig. 2 Chromosome structure. 
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Fig 4 The crossover operator. (a) Two paths before the crossover. (b) 
Two paths after exchanging two first sub-paths. 

A. Local Search Operator 

Among various types of search methods that explore a limited 
neighborhood of a local optimum, called local search methods, 
which of them that use gradient information as well as value 
information are generally more efficient. But gradient 
information obtained through considerable amount of 
calculation that depends on the dimension of the search space. 
The dimension of the search space is equal to the number of 
genes in the problem at hand. Therefore the amount of 
calculation is reduced significantly when the proposed 
representation is used rather than the previous representations. 
The gradient-based local search method used in this paper 
reduces the penalty of the chromosome through modifying the 
start and end points of genes based on the gradient information 
of the penalty function. This method is generally known as 
Gradient Ascent [12]. A typical path that is modified with this 
method is depicted in Fig. 5. It is seen that the path found 
using the local search has a shorter length, hence a lower 
penalty.  
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Fig 5 Local Search operator. The path before the hill-climbing 
(solid) and after it (dashed). 

III. EXPERIMENTAL RESULTS

The proposed algorithm is implemented and applied to two 
moderately difficult instances of the path planning problem. 
The complexity of these two cases is discussed in the sub-
section A and the experimental results are explained in B.     

A. Complexity Analysis  

In this subsection, the relationship between the number of sub-
paths and the complexity of problem is discussed. The number 
of sub-paths must be more than a specified number for an 

instance of path planning problem. For the first instance, 
depicted in Fig. 6, the number of sub-paths in each path cannot 
be less than three. Therefore at least two points (intermediate 
points) should be placed in the terrain. The path has a chance 
to pass over no wall if both of these two points are placed in 
the shadowed areas of Fig. 6. For the second instance, depicted 
in Fig. 7, the number of sub-paths in each path should be at 
least two. If two is chosen, then finding a path is equivalent to 
finding one intermediate point. If that point resides outside the 
shadowed area in Fig. 7, the resulting path passes over at least 
one wall. The smaller the shadowed area, the more difficult the 
search space becomes. In fact, with a small shadowed area, the 
global minimum of penalty function, that is associated with the 
best solution, places in a narrower valley of the cost function 
and has less chance of discovery by candidate solutions. The 
difficulty of the problem could be decreased by increasing the 
number of sub-paths appropriately. In fact more freedom is 
given to the path when the number of sub-paths increases. But 
unnecessary large number of sub-paths, means high-
dimensional search space, leads to more difficult search space 
and also increases the amount of necessary computation (i.e. 
for function evaluation and gradient calculation).  
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Fig 6 Shadowed area for first problem. It can be seen that the 
path passes a wall if one of the sub-paths end points locate 

placed outside of shadowed area.
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Fig 7 Shadowed area for first problem. It can be seen that 
the path passes a wall if even one of the sub-paths end-points 

locate outside of shadowed area. 
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B. Experiments and Their Results 

The proposed MA is evaluated using two instances of path 
planning problem mentioned above. Figures 8 and 9 display 
the best solution found by proposed MA and GA (exactly like 
MA but without local search operator).  Each experiment is 
done for several time and the results are averaged. It is obvious 
that the optimal or near optimal solution can be found using 
the proposed algorithm. The population size and the number of 
generations for two instance problem are in Table I. Referring 
to this table, it can easily be seen that the algorithm find 
solution after few generations while use relatively small 
population. As mentioned above no invalid solution produced 
using the proposed representation hence these relatively small 
populations can easily find the best solution.  
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Fig 8 The path found by MA (solid) and GA (dashed). 
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Fig 9 The path found by MA (solid) and GA (dashed). 

TABLE I ALGORITHM SETTINGS AND EXPERIMENTAL RESULTS.

Instance problem 
Num. of 

Generations 
Population 

Size
Instance 1 - GA 5 100 
Instance 1 - MA 2 50 
Instance 2 - GA 10 100 
Instance 2 - MA 10 50 

IV. CONCLUSIONS

In this paper, a novel representation for the path planning 
problem that was suitable for evolutionary algorithm especially 
memetic algorithm was proposed. A local search operator for 
tuning the start and end points of sub-paths was also proposed. 
The experimental results illustrate that in the path planning 
problem, the path found in a few generations with a relatively 
small population of chromosomes. The results also 

demonstrate that the solution found using a memetic algorithm 
is more optimal than that found by a simple genetic algorithm. 
Optimization of the shape of sub-paths using an appropriate 
local search method is our future step. 
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