Search results for: highest posterior density interval.
2312 Using Interval Trees for Approximate Indexing of Instances
Authors: Khalil el Hindi
Abstract:
This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.
Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15092311 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection
Authors: Serge B. Provost, Min Jiang
Abstract:
The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23682310 Confidence Intervals for the Coefficients of Variation with Bounded Parameters
Authors: Jeerapa Sappakitkamjorn, Sa-aat Niwitpong
Abstract:
In many practical applications in various areas, such as engineering, science and social science, it is known that there exist bounds on the values of unknown parameters. For example, values of some measurements for controlling machines in an industrial process, weight or height of subjects, blood pressures of patients and retirement ages of public servants. When interval estimation is considered in a situation where the parameter to be estimated is bounded, it has been argued that the classical Neyman procedure for setting confidence intervals is unsatisfactory. This is due to the fact that the information regarding the restriction is simply ignored. It is, therefore, of significant interest to construct confidence intervals for the parameters that include the additional information on parameter values being bounded to enhance the accuracy of the interval estimation. Therefore in this paper, we propose a new confidence interval for the coefficient of variance where the population mean and standard deviation are bounded. The proposed interval is evaluated in terms of coverage probability and expected length via Monte Carlo simulation.
Keywords: Bounded parameters, coefficient of variation, confidence interval, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42252309 The Effects of Eight Weeks of Interval Endurance Training on hs-CRP Levels and Anthropometric Parameters in Overweight Men
Authors: S. Khoshemehry, M. J. Pourvaghar
Abstract:
Inflammatory markers are known as the main predictors of cardiovascular diseases. This study aimed at determining the effect of 8 weeks of interval endurance training on hs-CRP level and some anthropometric parameters in overweight men. Following the call for participation in research project in Kashan, 73 volunteers participated in it and constituted the statistical population of the study. Then, 28 overweight young men from the age of 22 to 25 years old were randomly assigned into two groups of experimental and control group (n=14). Anthropometric and the blood sample was collected before and after the termination of the program for measuring hs-CRP. The interval endurance program was performed at 60 to 75% of maximum heart rate in 2 sessions per week for 8 weeks. Kolmogorov-Smirnov test was used to test whether two samples come from the same distribution and T-test was used to assess the difference of two groups which were statistically significant at the level of 0.05. The result indicated that there was a significant difference between the hs-RP, weight, BMI and W/H ratio of overweight men in posttest in the exercise group (P≤0.05) but not in the control group. Interval endurance training program causes decrease in hs-CRP level and anthropometric parameters.Keywords: Interval endurance training program, hs-CRP, overweight, anthropometric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8152308 Survival Model for Partly Interval-Censored Data with Application to Anti D in Rhesus D Negative Studies
Authors: F. A. M. Elfaki, Amar Abobakar, M. Azram, M. Usman
Abstract:
This paper discusses regression analysis of partly interval-censored failure time data, which is occur in many fields including demographical, epidemiological, financial, medical and sociological studies. For the problem, we focus on the situation where the survival time of interest can be described by the additive hazards model in the present of partly interval-censored. A major advantage of the approach is its simplicity and it can be easily implemented by using R software. Simulation studies are conducted which indicate that the approach performs well for practical situations and comparable to the existing methods. The methodology is applied to a set of partly interval-censored failure time data arising from anti D in Rhesus D negative studies.
Keywords: Anti D in Rhesus D negative, Cox’s model, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16922307 On the Parameter of the Burr Type X under Bayesian Principles
Authors: T. N. Sindhu, M. Aslam
Abstract:
A comprehensive Bayesian analysis has been carried out in the context of informative and non-informative priors for the shape parameter of the Burr type X distribution under different symmetric and asymmetric loss functions. Elicitation of hyperparameter through prior predictive approach is also discussed. Also we derive the expression for posterior predictive distributions, predictive intervals and the credible Intervals. As an illustration, comparisons of these estimators are made through simulation study.
Keywords: Credible Intervals, Loss Functions, Posterior Predictive Distributions, Predictive Intervals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15052306 A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm
Authors: Min-Shiang Hwang, Cheng-Chi Lee, Shiang-Feng Tzeng
Abstract:
A new secure knapsack cryptosystem based on the Merkle-Hellman public key cryptosystem will be proposed in this paper. Although it is common sense that when the density is low, the knapsack cryptosystem turns vulnerable to the low-density attack. The density d of a secure knapsack cryptosystem must be larger than 0.9408 to avoid low-density attack. In this paper, we investigate a new Permutation Combination Algorithm. By exploiting this algorithm, we shall propose a novel knapsack public-key cryptosystem. Our proposed scheme can enjoy a high density to avoid the low-density attack. The density d can also exceed 0.9408 to avoid the low-density attack.Keywords: Public key, Knapsack problem, Knapsack cryptosystem, low-density attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19552305 Effect of Planting Density on Yield and Yield Components of Safflower Cultivars in Spring Planting
Authors: Gholamreza Zarei, Hossein Shamsi, Farjam Fazeli
Abstract:
This study carried out to determine the effect of plant densities on some agronomic characteristics of four safflower cultivars in spring planting. The experiment was conducted at Yazd, Iran- using a factorial in a randomized complete block design with four replications. Cultivars were including Arak, IL, Asteria and Local and plant densities were 10, 13.3, 20 and 40 plant/m2. Number of seeds/head, number of heads/plant, HI, 1000-seed weight and seed yield significantly decreased as planting density increased. With increasing planting density, LAI, plant height, first branch height and biological yield increased. The highest seed yield was obtained in 13.3 plant/m2 (2167 kg/ha). There were significant differences between cultivars. Local cv. had higher seed yield than the other cultivars mainly due to higher heads/plant and seeds/head.Keywords: safflower, plant density, cultivar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21452304 Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss
Authors: H. Bevrani, N. Najafi
Abstract:
This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.Keywords: Bayesian inference, Beta-binomial Distribution, LPLcriteria, quadratic loss function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492303 Cell Biomass and Lipid Productivities of Meyerella planktonica under Autotrophic and Heterotrophic Growth Conditions
Authors: Rory Anthony Hutagalung, Leonardus Widjaya
Abstract:
Microalgae Meyerella planktonica is a potential biofuel source because it can grow in bulk in either autotrophic or heterotrophic condition. However, the quantitative growth of this algal type is still low as it tends to precipitates on the bottom. Besides, the lipid concentration is still low when grown in autotrophic condition. In contrast, heterotrophic condition can enhance the lipid concentration. The combination of autotrophic condition and agitation treatment was conducted to increase the density of the culture. On the other hand, a heterotrophic condition was set up to raise the lipid production. A two-stage experiment was applied to increase the density at the first step and to increase the lipid concentration in the next step. The autotrophic condition resulted higher density but lower lipid concentration compared to heterotrophic one. The agitation treatment produced higher density in both autotrophic and heterotrophic conditions. The two-stage experiment managed to enhance the density during the autotrophic stage and the lipid concentration during the heterotrophic stage. The highest yield was performed by using 0.4% v/v glycerol as a carbon source (2.9±0.016 x 10^6 cells w/w) attained 7 days after the heterotrophic stage began. The lipid concentration was stable starting from day 7.
Keywords: Agitation, Glycerol, Heterotrophic, Lipid Productivity, Meyerella planktonica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20882302 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree
Authors: S. A. Gayvoronsky, T. A. Ezangina
Abstract:
The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.
Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15922301 Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability
Authors: Liping Li, Changchun Liu, Ke Li, Chengyu Liu
Abstract:
Non-stationary trend in R-R interval series is considered as a main factor that could highly influence the evaluation of spectral analysis. It is suggested to remove trends in order to obtain reliable results. In this study, three detrending methods, the smoothness prior approach, the wavelet and the empirical mode decomposition, were compared on artificial R-R interval series with four types of simulated trends. The Lomb-Scargle periodogram was used for spectral analysis of R-R interval series. Results indicated that the wavelet method showed a better overall performance than the other two methods, and more time-saving, too. Therefore it was selected for spectral analysis of real R-R interval series of thirty-seven healthy subjects. Significant decreases (19.94±5.87% in the low frequency band and 18.97±5.78% in the ratio (p<0.001)) were found. Thus the wavelet method is recommended as an optimal choice for use.Keywords: empirical mode decomposition, heart rate variability, signal detrending, smoothness priors, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20682300 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image
Authors: Yohei Saika, Yuji Haraguchi
Abstract:
We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19872299 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16462298 Evaluating the Response of Rainfed-Chickpea to Population Density in Iran, Using Simulation
Authors: Manoochehr Gholipoor
Abstract:
The response of growth and yield of rainfed-chickpea to population density should be evaluated based on long-term experiments to include the climate variability. This is achievable just by simulation. In this simulation study, this evaluation was done by running the CYRUS model for long-term daily weather data of five locations in Iran. The tested population densities were 7 to 59 (with interval of 2) stands per square meter. Various functions, including quadratic, segmented, beta, broken linear, and dent-like functions, were tested. Considering root mean square of deviations and linear regression statistics [intercept (a), slope (b), and correlation coefficient (r)] for predicted versus observed variables, the quadratic and broken linear functions appeared to be appropriate for describing the changes in biomass and grain yield, and in harvest index, respectively. Results indicated that in all locations, grain yield tends to show increasing trend with crowding the population, but subsequently decreases. This was also true for biomass in five locations. The harvest index appeared to have plateau state across low population densities, but decreasing trend with more increasing density. The turning point (optimum population density) for grain yield was 30.68 stands per square meter in Isfahan, 30.54 in Shiraz, 31.47 in Kermanshah, 34.85 in Tabriz, and 32.00 in Mashhad. The optimum population density for biomass ranged from 24.6 (in Tabriz) to 35.3 stands per square meter (Mashhad). For harvest index it varied between 35.87 and 40.12 stands per square meter.Keywords: Rainfed-chickpea, biomass, harvest index, grain yield, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13332297 Coverage Probability of Confidence Intervals for the Normal Mean and Variance with Restricted Parameter Space
Authors: Sa-aat Niwitpong
Abstract:
Recent articles have addressed the problem to construct the confidence intervals for the mean of a normal distribution where the parameter space is restricted, see for example Wang [Confidence intervals for the mean of a normal distribution with restricted parameter space. Journal of Statistical Computation and Simulation, Vol. 78, No. 9, 2008, 829–841.], we derived, in this paper, analytic expressions of the coverage probability and the expected length of confidence interval for the normal mean when the whole parameter space is bounded. We also construct the confidence interval for the normal variance with restricted parameter for the first time and its coverage probability and expected length are also mathematically derived. As a result, one can use these criteria to assess the confidence interval for the normal mean and variance when the parameter space is restricted without the back up from simulation experiments.
Keywords: Confidence interval, coverage probability, expected length, restricted parameter space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16142296 Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows
Authors: Yasuo Obikane
Abstract:
This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.Keywords: Turbulence Modeling , Density Gradient Correlation, Compressible
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14442295 Traffic Density Estimation for Multiple Segment Freeways
Authors: Karandeep Singh, Baibing Li
Abstract:
Traffic density, an indicator of traffic conditions, is one of the most critical characteristics to Intelligent Transport Systems (ITS). This paper investigates recursive traffic density estimation using the information provided from inductive loop detectors. On the basis of the phenomenological relationship between speed and density, the existing studies incorporate a state space model and update the density estimate using vehicular speed observations via the extended Kalman filter, where an approximation is made because of the linearization of the nonlinear observation equation. In practice, this may lead to substantial estimation errors. This paper incorporates a suitable transformation to deal with the nonlinear observation equation so that the approximation is avoided when using Kalman filter to estimate the traffic density. A numerical study is conducted. It is shown that the developed method outperforms the existing methods for traffic density estimation.Keywords: Density estimation, Kalman filter, speed-densityrelationship, Traffic surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18362294 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks
Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas
Abstract:
EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16- 20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19352293 The Statistical Properties of Filtered Signals
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.
Keywords: Circular Convolution, linear Convolution, mixture density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15152292 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus
Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K
Abstract:
Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31102291 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering
Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem
Abstract:
Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.
Keywords: Grid–based clustering, SVC, Density function, Radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17432290 Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion
Authors: Pankaj, Sonia R. Bansal
Abstract:
Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.Keywords: Elastic-Plastic, Inclusion, Rotating disc, Stress, Strain rates, Transition, variable density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382289 A New Objective Weight on Interval Type-2 Fuzzy Sets
Authors: Nurnadiah Z., Lazim A.
Abstract:
The design of weight is one of the important parts in fuzzy decision making, as it would have a deep effect on the evaluation results. Entropy is one of the weight measure based on objective evaluation. Non--probabilistic-type entropy measures for fuzzy set and interval type-2 fuzzy sets (IT2FS) have been developed and applied to weight measure. Since the entropy for (IT2FS) for decision making yet to be explored, this paper proposes a new objective weight method by using entropy weight method for multiple attribute decision making (MADM). This paper utilizes the nature of IT2FS concept in the evaluation process to assess the attribute weight based on the credibility of data. An example was presented to demonstrate the feasibility of the new method in decision making. The entropy measure of interval type-2 fuzzy sets yield flexible judgment and could be applied in decision making environment.Keywords: Objective weight, entropy weight, multiple attributedecision making, type-2 fuzzy sets, interval type-2 fuzzy sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16592288 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians
Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed
Abstract:
In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.
Keywords: Logistic regression model, Expectationmaximization, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17322287 A Markov Chain Approximation for ATS Modeling for the Variable Sampling Interval CCC Control Charts
Authors: Y. K. Chen, K. C. Chiou, C. Y. Chen
Abstract:
The cumulative conformance count (CCC) charts are widespread in process monitoring of high-yield manufacturing. Recently, it is found the use of variable sampling interval (VSI) scheme could further enhance the efficiency of the standard CCC charts. The average time to signal (ATS) a shift in defect rate has become traditional measure of efficiency of a chart with the VSI scheme. Determining the ATS is frequently a difficult and tedious task. A simple method based on a finite Markov Chain approach for modeling the ATS is developed. In addition, numerical results are given.Keywords: Cumulative conformance count, variable sampling interval, Markov Chain, average time to signal, control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15222286 Procedure to Use Quantitative Bone-Specific SPECT/CT in North Karelia Central Hospital
Authors: L. Korpinen, P. Taskinen, P. Rautio
Abstract:
This study aimed to describe procedures that we developed to use in the quantitative, bone-specific SPECT/CT at our hospital. Our procedures included the following questions for choosing imaging protocols, which were based on a clinical doctor's referral: (1) Is she/he a cancer patient or not? (2) Are there any indications of inflammatory rheumatoid arthritis? We performed about 1,106 skeletal scintigraphies over two years. About 394 patients were studied with quantitative bone-specific single-photon emission computed tomography/computerized tomography (SPECT/CT) (i.e., about 36% of all bone scintigraphies). Approximately 64% of the patients were studied using the conventional Anterior-Posterior/Posterior-Anterior imaging. Our procedure has improved efficiency and decreased cycle times.
Keywords: Skeletal scintigraphy, SPECT/CT, imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11762285 Measuring Heterogeneous Traffic Density
Authors: V. Thamizh Arasan, G. Dhivya
Abstract:
Traffic Density provides an indication of the level of service being provided to the road users. Hence, there is a need to study the traffic flow characteristics with specific reference to density in detail. When the length and speed of the vehicles in a traffic stream vary significantly, the concept of occupancy, rather than density, is more appropriate to describe traffic concentration. When the concept of occupancy is applied to heterogeneous traffic condition, it is necessary to consider the area of the road space and the area of the vehicles as the bases. Hence, a new concept named, 'area-occupancy' is proposed here. It has been found that the estimated area-occupancy gives consistent values irrespective of change in traffic composition.Keywords: Density Measurement, Heterogeneity, Occupancy, Traffic Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32352284 The Performance of Predictive Classification Using Empirical Bayes
Authors: N. Deetae, S. Sukparungsee, Y. Areepong, K. Jampachaisri
Abstract:
This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.
Keywords: Classification, Empirical Bayes, Posterior predictive probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15962283 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound
Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki
Abstract:
This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.
Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657