**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31482

##### Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion

**Authors:**
Pankaj,
Sonia R. Bansal

**Abstract:**

**Keywords:**
Elastic-Plastic,
Inclusion,
Rotating disc,
Stress,
Strain rates,
Transition,
variable density.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1057405

**References:**

[1] H. Kraus, "Creep Analysis", John Wiley & Sons, New York: Toronto, pp. 568-599, 1980.

[2] J.D. Lubahan and R.D. Felgar, "Plasticity and creep of metals", John Wiley & Sons, Inc., New York: London, 1961.

[3] A. Nadai, "Theory of flow and fracture of solids", 2nd, pp. 472-489, 1950.

[4] J. T. Boyle and J. Spence, "Stress Analysis for Creep" Butterworths. Coy. Ltd. London, 1983.

[5] F.R.N. Nabarro, and H.L. Villiers, "de. Physics of Creep" Taylor & Francis, PA, 1995

[6] T.V. Reddy and H. Srinath, "Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density", Int. J. Mech. Sci., vol..16, pp. 85, 1974.

[7] C.I. Change, "Stresses and displacement in rotating anisotropic disks with variable densities", AIAA Journal, pp. 116, 1976.

[8] A.M. Wahl, "Analysis of creep in Rotating Discs Based on Tresca Criterion and Associated Flow Rule", Jr. Appl. Mech., vol. 23, pp.103, 1956.

[9] B.R. Seth, "Transition theory of Elastic- plastic deformation, Creep and relaxation", Nature, 195(1962), pp. 896-897.

[10] B.R. Seth, "Measure concept in Mechanics", Int. J. Non-linear Mech., vol.. I(2), pp.35-40, 1966.

[11] B.R. Seth, "Transition condition, The yield condition", Int. J. Nonlinear Mechanics, vol. 5, pp. 279-285, 1970.

[12] S. Hulsurkar, "Transition theory of creep shell under uniform pressure", ZAMM, vol. 46, pp. 431-437, 1966.

[13] B.R. Seth, "Creep Transition in Rotating Cylinder", J. Math. Phys. Sci., vol. 8, pp. 1-5, 1974.

[14] S.K. Gupta and R.L.Dharmani, "Creep transition in thick walled cylinder under internal Pressure", Z.A.M.M, vol. 59, pp. 517- 521, 1979.

[15] S.K. Gupta and Pankaj, "Creep transition in a thin rotating disc with rigid inclusion", Defence Science Journal, vol. 57, pp. 185-195, 2007.

[16] S.K. Gupta and Pankaj, "Thermo elastic - plastic transition in a thin rotating disc with inclusion", Thermal Science, vol. 11, pp 103- 118, 2007.

[17] S.K. Gupta and Pankaj, "Creep Transition in an isotropic disc having variable thickness subjected to internal pressure", Proc. Nat. Acad. Sci. India, Sect. A, vol. 78, Part I, pp. 57-66, 2008.

[18] Gupta S.K. & Pankaj, "Creep transition in an isotropic disc having variable thickness subjected to internal pressure, accepted for publication in Proceeding of National Academy of Science ,India, Part-A, 2008.

[19] S.K. Gupta and Sonia Pathak , "Creep Transition in a thin Rotating Disc of variable density", Defence Sci. Journal, vol. 50, pp.147-153, 2000.

[20] I. S. Sokolnikoff, "Mathematical theory of Elasticity", McGraw - Hill Book Co., Second Edition, New York, pp. 70-71, 1950.

[21] Pankaj, Some problems in Elastic-plasticity and creep Transition, Ph.D. Thesis, Department of mathematics, H.P. University Shimla, India, pp. 43- 54, June 2006.

[22] F.K.G. Odquist, "Mathematical theory of creep and creep rupture, Clarendon Press", Oxford, U.K, 1974.

[23] F.P.J. Rimrott, "Creep of thick walled tube under internal pressure considering large strain", J. Appl., Mech., vol. 29, pp. 271, 1959.