Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 246

Search results for: Rotating disc

246 Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion

Authors: Pankaj, Sonia R. Bansal

Abstract:

Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.

Keywords: Elastic-Plastic, Inclusion, Rotating disc, Stress, Strain rates, Transition, variable density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
245 Three Dimensional Analysis of Sequential Quasi Isotropic Composite Disc for Rotating Machine Application

Authors: Amin Almasi

Abstract:

Composite laminates are relatively weak in out of plane loading, inter-laminar stress, stress concentration near the edge and stress singularities. This paper develops a new analytical formulation for laminated composite rotating disc fabricated from symmetric sequential quasi isotropic layers to predict three dimensional stress and deformation. This analysis is necessary to evaluate mechanical integrity of fiber reinforced multi-layer laminates used for high speed rotating applications such as high speed impellers. Three dimensional governing equations are written for rotating composite disc. Explicit solution is obtained with "Frobenius" expansion series. Based on analytical results, there are two separate zones of three dimensional stress fields in centre and edge of rotating disc. For thin discs, out of plane deformations and stresses are small in comparison with plane ones. For relatively thick discs deformation and stress fields are three dimensional.

Keywords: Composite Disc, Rotating Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
244 Elastic-Plastic Transition in a Thin Rotating Disc with Inclusion

Authors: Pankaj, Sonia R. Bansal

Abstract:

Stresses for the elastic-plastic transition and fully plastic state have been derived for a thin rotating disc with inclusion and results have been discussed numerically and depicted graphically. It has been observed that the rotating disc with inclusion and made of compressible material requires lesser angular speed to yield at the internal surface whereas it requires higher percentage increase in angular speed to become fully plastic as compare to disc made of incompressible material.

Keywords: Angular speed, Elastic-Plastic, Inclusion, Rotatingdisc, Stress, Transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
243 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, isotropic, steady-state, thermal gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
242 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material

Authors: Tania Bose, Minto Rattan, Neeraj Chamoli

Abstract:

In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: Creep, functionally graded isotropic material, steady-state, thermal gradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
241 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.

Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
240 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.

Keywords: Crack-tip deformations, static loading, stress concentration, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465
239 Effect of Rotating Electrode

Authors: S. Gnapowski, H. Akiyama, S. Hamid R. Hosseini, C. Yamabe

Abstract:

A gold coated copper rotating electrode was used to eliminate surface oxidation effect. This study examined the effect of electrode rotation on the ozone generation process and showed that an ozonizer with an electrode rotating system might be a possible way to increase ozone-synthesis efficiency. Two new phenomena appeared during experiments with the rotating electrode. First was that ozone concentration increased to about two times higher than that of the case with no rotation. Second, input power and discharge area were found to increase with the rotation speed. Both ozone concentration and ozone production efficiency improved in the case of rotating electrode compared to the case with a non-rotating electrode. One possible reason for this was the increase in discharge length of micro-discharges during electrode rotation. The rotating electrode decreased onset voltage, while reactor capacitance increased with rotation. Use of a rotating-type electrode allowed earlier observation of the ozone zero phenomena compared with a non-rotating electrode because, during rotation, the entire electrode surface was functional, allowing nitrogen on the electrode surface to be evenly consumed. Nitrogen demand increased with increasing rotation s

Keywords: Rotating electrode, input power, onset voltage, discharge canal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
238 An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
237 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

The wear measuring and wear modelling are fundamental issues in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin is made of steel with a tip, positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument. The Talysurf profilometer was used to measure the pin/disc wear scar depth, digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results were implemented by using the Matlab program. This paper focuses on how the alicona can be used for wear measurements and how the neural network can be used for wear estimation.

Keywords: Wear measuring, Wear modelling, Neural Network, Alicona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3824
236 Eigenwave Analysis and Simulation of Disc Loaded Interaction Structure for Wideband Gyro-TWT Amplifier

Authors: R. K. Singh, P. K. Jain

Abstract:

In the present paper, disc loaded interaction structure for potential application in wideband Gyro-TWT amplifier has been analyzed, taking all the space and modal harmonics into consideration, for the eigenwave solutions. The analysis has been restricted to azimuthally symmetric TE0,n mode. Dispersion characteristics have been plotted by varying the structure parameters and have been validated against HFSS simulation results. The variation of eigenvalue with respect to different structure parameters has also been presented. It has been observed that disc periodicity plays very important role for wideband operation of disc-loaded Gyro-TWT.

Keywords: Broadbanding, Disc-loaded interaction structure, Eigenvalue, Gyro-TWT, HFSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
235 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
234 Temperature Field Study of Brake Disc in a Belt Conveyor Brake

Authors: Hou Youfu, Wang Daoming, Meng Qingrui

Abstract:

To reveal the temperature field distribution of disc brake in downward belt conveyor, mathematical models of heat transfer for disc brake were established combined with heat transfer theory. Then, the simulation process was stated in detail and the temperature field of disc brake under conditions of dynamic speed and dynamic braking torque was numerically simulated by using ANSYS software. Finally the distribution and variation laws of temperature field in the braking process were analyzed. Results indicate that the maximum surface temperature occurs at a time before the brake end and there exist large temperature gradients in both radial and axial directions, while it is relatively small in the circumferential direction.

Keywords: Downward belt conveyor, Disc brake, Temperature field, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
233 Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere

Authors: Eiichi Sasaki, Shin-ichi Takehiro, Michio Yamada

Abstract:

We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.

Keywords: rotating sphere, two-dimensional flow, bifurcationstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
232 Statistical Description in the Turbulent Near Wake of a Rotating Circular Cylinder

Authors: Sharul S. Dol, U. Azimov, Robert J. Martinuzzi

Abstract:

Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream. The interest was to examine the turbulence properties at the suppression of periodicity in vortex formation process. An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 9000 for velocity ratios, λ between 0 and 2.7. Hot-wire anemometry and particle image velocimetry results indicate that the rotation of the cylinder causes significant changes in the vortical activities. The turbulence quantities are getting smaller as λ increases due to suppression of coherent vortex structures.

Keywords: Rotating circular cylinder, Reynolds stress, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
231 The Effect of the Disc Coulters Forms on Cutting of Spring Barley Residues in No-Tillage

Authors: E. Šarauskis, L. Masilionytė, K. Romaneckas, Z. Kriaučiūnienė, A. Jasinskas

Abstract:

The introduction of sowing technologies into minimum- or no-tillage soil has a number of economical and environmental virtues, such as improving soil properties, decreasing soil erosion and degradation, and saving working time and fuel. However, the main disadvantage of these technologies is that plant residues on the soil surface reduce the quality of the planted crop seeds, thus requiring plant residues to be removed or cut. This paper presents a analysis of disc coulter parameters and an experimental investigation of cutting spring barley straw containing various amounts of moisture with different disc coulters (smooth and notched).

Keywords: Disc coulter, Spring barley residue, No-till, Straw moisture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
230 Capture and Feedback in Flying Disc Throw with use of Kinect

Authors: Yasuhisa Tamura, Koji Yamaoka, Masataka Uehara, Takeshi Shima

Abstract:

This paper proposes a three-dimensional motion capture and feedback system of flying disc throwing action learners with use of Kinect device. Rather than conventional 3-D motion capture system, Kinect has advantages of cost merit, easy system development and operation. A novice learner of flying disc is trained to keep arm movement in steady height, to twist the waist, and to stretch the elbow according to the waist angle. The proposing system captures learners- body movement, checks their skeleton positions in pre-motion / motion / post-motion in several ways, and displays feedback messages to refine their actions.

Keywords: Flying disc, throwing movement, Kinect, capture, feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
229 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: Ocular diseases, retinal fundus image, optic disc detection and segmentation, fully convolutional network, overlap measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314
228 Numerical Simulation of the Transient Shape Variation of a Rotating Liquid Droplet

Authors: Tadashi Watanabe

Abstract:

Transient shape variation of a rotating liquid dropletis simulated numerically. The three dimensional Navier-Stokes equations were solved by using the level set method. The shape variation from the sphere to the rotating ellipsoid, and to the two-robed shapeare simulated, and the elongation of the two-robed droplet is discussed. The two-robed shape after the initial transient is found to be stable and the elongation is almost the same for the cases with different initial rotation rate. The relationship between the elongation and the rotation rate is obtained by averaging the transient shape variation. It is shown that the elongation of two-robed shape is in good agreement with the existing experimental data. It is found that the transient numerical simulation is necessary for analyzing the largely elongated two-robed shape of rotating droplet.

Keywords: Droplet, rotation, two-robed shape, transient simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
227 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong

Abstract:

An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.

Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
226 Brief Review of the Self-Tightening, Left-Handed Thread

Authors: Robert S. Giachetti, Emanuele Grossi

Abstract:

Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.

Keywords: Rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105
225 Directional Drilling Optimization by Non-Rotating Stabilizer

Authors: Eisa Noveiri, Adel Taheri Nia

Abstract:

The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.

Keywords: non-rotating, Adjustable stabilizer, simulator, Directional Drilling, optimization, Oil Well Drilling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
224 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
223 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Nanoparticles, Newtonian fluid model, chemical reaction, heat source/sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607
222 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors

Authors: Ibrahim Beldjilali, Adel Ghenaiet

Abstract:

The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.

Keywords: Aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298
221 Computer-Aided Analysis of Flow in a Rotating Single Disk

Authors: Mohammad Shanbghazani, Vahid Heidarpour, Iraj Mirzaee

Abstract:

In this study a two dimensional axisymmetric, steady state and incompressible laminar flow in a rotating single disk is numerically investigated. The finite volume method is used for solving the momentum equations. The numerical model and results are validated by comparing it to previously reported experimental data for velocities, angles and moment coefficients. It is demonstrated that increasing the axial distance increases the value of axial velocity and vice versa for tangential and total velocities. However, the maximum value of nondimensional radial velocity occurs near the disk wall. It is also found that with increase rotational Reynolds number, moment coefficient decreases.

Keywords: Rotating disk, Laminar flow, Numerical, Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
220 Acoustic Instabilities on Swirling Flames

Authors: T. Parra, R. Z. Szasz, C. Duwig, R. Pérez, V. Mendoza, F. Castro

Abstract:

The POD makes possible to reduce the complete high-dimensional acoustic field to a low-dimensional subspace where different modes are identified and let reconstruct in a simple way a high percentage of the variance of the field.

Rotating modes are instabilities which are commonly observed in swirling flows. Such modes can appear under both cold and reacting conditions but that they have different sources: while the cold flow rotating mode is essentially hydrodynamic and corresponds to the wellknown PVC (precessing vortex core) observed in many swirled unconfined flows, the rotating structure observed for the reacting case inside the combustion chamber might be not hydrodynamically but acoustically controlled. The two transverse acoustic modes of the combustion chamber couple and create a rotating motion of the flame which leads to a self-sustained turning mode which has the features of a classical PVC but a very different source (acoustics and not hydrodynamics).

Keywords: Acoustic field, POD, swirling flames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
219 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System

Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee

Abstract:

Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.

Keywords: Rotating shaft, flexible blades, centrifugal stiffening, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
218 Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks

Authors: G. R. Rameshkumar, B. V. A Rao, K. P. Ramachandran

Abstract:

Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery.

Keywords: Coast Down Time, Misalignment, Unbalance, Artificial Neural Networks, Radial Basis Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
217 Bearing Fault Feature Extraction by Recurrence Quantification Analysis

Authors: V. G. Rajesh, M. V. Rajesh

Abstract:

In rotating machinery one of the critical components that is prone to premature failure is the rolling bearing. Consequently, early warning of an imminent bearing failure is much critical to the safety and reliability of any high speed rotating machines. This study is concerned with the application of Recurrence Quantification Analysis (RQA) in fault detection of rolling element bearings in rotating machinery. Based on the results from this study it is reported that the RQA variable, percent determinism, is sensitive to the type of fault investigated and therefore can provide useful information on bearing damage in rolling element bearings.

Keywords: Bearing fault detection, machine vibrations, nonlinear time series analysis, recurrence quantification analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524