The Statistical Properties of Filtered Signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
The Statistical Properties of Filtered Signals

Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.

Abstract:

In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.

Keywords: Circular Convolution, linear Convolution, mixture density function.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087872

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520

References:


[1] K. F. Bernhard, ” On Sums of Random Variables and Independence, ” The American Statistician, vol. 40, no. 3, pp. 214-215, 1986.
[2] S. Beheshti, and M. A. Dahleh, ”A new Information-Theoretic Approach to Signals Denoising and Best Basis Selection, ” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3613-3624, 2005.
[3] Il Kyu Eom, and Yoo Shin Kim, ”Wavelet-Based Denoising with Nearly Arbitrary Shaped Windows, ” IEEE Signal Processing Papers, vol. 11, no. 12, pp. 937-940, 2004.
[4] A. D. Russo, ”Calculation of Output Noise Variances for Discrete Time- Invariant Filters, ” IEEE Transactions on Aerospace and Electronic Systems, vol. 3, no. 5, pp. 779-783,1967.
[5] A. Das, and B. D. Rao, ”SNR and Noise Variance Estimation for MIMO Systems, ” IEEE Transactions on Signal processing, vol. 60, no. 8, pp. 3929-3941, 2012.
[6] O. Dikmen, and A. T. Cemgil, ”Unsupervised Single-Channel Source Separation using Bayesian NMF, ” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp 93-96, 2009.
[7] M. H. Radfar, and R. M. Dansereau, ”Single-Channel Speech Separation Using Soft Mask Filtering, ” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2299-2310, 2007.
[8] G. J. Jang, T. W. Lee, Y. H. Oh, ”Single Channel Signal Separation using Time-Domain Basis Functions, ” IEEE Signal Processing Letters, vol. 10, no. 6, Jun. 2003.
[9] T. Kim, H. T. Attias, S. Y. Lee, and T. W. Lee, ”Blind Source Separation Exploiting Higher Order Frequency Dependencies, ” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 1, 2007.
[10] A. Antoniadis, E. Paparoditis, and T. Sapatinas, ”A Functional Wavelet- Kernel Approach for Time Series Prediction, ” Journal of the Royal Statistical Society, vol. 68, no. 5, pp. 837-857, 2006.
[11] D. R. Kahl, and J. Ledolter ”A Recursive Kalman Filter Forecasting Approach, ” Management Science, vol. 29, no. 11, pp. 1325-1333, 1983.
[12] C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli, ”Neural Network Incorporating Meal Information Improves Accuracy of Short-Time Prediction of Glucose Concentration, ” IEEE Transactions on Biomedical Engineering, vol. 59, no. 6, pp. 1550-1560, 2006.
[13] C. H.Wu, J. M. Ho, and D. T. Lee, ”Travel-Time Prediction with Support Vector Regression, ” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 276-281, 2004.
[14] J. Rice, and E. van Zwet, ” A Simple and Effective Method for Predicting Travel Times on Freeway, ” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 3, pp. 200-207, 2004.
[15] L. A. Goodman, ”On the Exact Variance of Products, ” Journal of the American Statistical Association, vol. 55, no. 292, pp. 708-713, 1960.
[16] L. A. Goodman, ”The Variance of the Product of K Random Variables, ” Journal of the American Statistical Association, vol. 57, no. 297, pp. 54-60, 1962.
[17] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd Edition, New York: McGraw-Hill, 1984.