{"title":"Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion","authors":"Pankaj, Sonia R. Bansal","volume":14,"journal":"International Journal of Mathematical and Computational Sciences","pagesStart":88,"pagesEnd":98,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/2529","abstract":"Creep stresses and strain rates have been obtained\r\nfor a thin rotating disc having variable density with inclusion by\r\nusing Seth-s transition theory. The density of the disc is assumed to\r\nvary radially, i.e. ( ) 0 \u00a4\u00fc \u00a4\u00fc r\/b m - = ; \u00a4\u00fc 0 and m being real positive\r\nconstants. It has been observed that a disc, whose density increases\r\nradially, rotates at higher angular speed, thus decreasing the\r\npossibility of a fracture at the bore, whereas for a disc whose\r\ndensity decreases radially, the possibility of a fracture at the bore\r\nincreases.","references":"[1] H. Kraus, \"Creep Analysis\", John Wiley & Sons, New York:\r\nToronto, pp. 568-599, 1980.\r\n[2] J.D. Lubahan and R.D. Felgar, \"Plasticity and creep of metals\", John\r\nWiley & Sons, Inc., New York: London, 1961.\r\n[3] A. Nadai, \"Theory of flow and fracture of solids\", 2nd, pp. 472-489,\r\n1950.\r\n[4] J. T. Boyle and J. Spence, \"Stress Analysis for Creep\"\r\nButterworths. Coy. Ltd. London, 1983.\r\n[5] F.R.N. Nabarro, and H.L. Villiers, \"de. Physics of Creep\" Taylor &\r\nFrancis, PA, 1995\r\n[6] T.V. Reddy and H. Srinath, \"Elastic stresses in a rotating anisotropic\r\nannular disk of variable thickness and variable density\", Int. J. Mech.\r\nSci., vol..16, pp. 85, 1974.\r\n[7] C.I. Change, \"Stresses and displacement in rotating anisotropic disks\r\nwith variable densities\", AIAA Journal, pp. 116, 1976.\r\n[8] A.M. Wahl, \"Analysis of creep in Rotating Discs Based on Tresca\r\nCriterion and Associated Flow Rule\", Jr. Appl. Mech., vol. 23, pp.103,\r\n1956.\r\n[9] B.R. Seth, \"Transition theory of Elastic- plastic deformation, Creep\r\nand relaxation\", Nature, 195(1962), pp. 896-897.\r\n[10] B.R. Seth, \"Measure concept in Mechanics\", Int. J. Non-linear Mech.,\r\nvol.. I(2), pp.35-40, 1966.\r\n[11] B.R. Seth, \"Transition condition, The yield condition\", Int. J. Nonlinear\r\nMechanics, vol. 5, pp. 279-285, 1970.\r\n[12] S. Hulsurkar, \"Transition theory of creep shell under uniform\r\npressure\", ZAMM, vol. 46, pp. 431-437, 1966.\r\n[13] B.R. Seth, \"Creep Transition in Rotating Cylinder\", J. Math. Phys.\r\nSci., vol. 8, pp. 1-5, 1974.\r\n[14] S.K. Gupta and R.L.Dharmani, \"Creep transition in thick walled\r\ncylinder under internal Pressure\", Z.A.M.M, vol. 59, pp. 517- 521,\r\n1979.\r\n[15] S.K. Gupta and Pankaj, \"Creep transition in a thin rotating disc\r\nwith rigid inclusion\", Defence Science Journal, vol. 57, pp. 185-195,\r\n2007.\r\n[16] S.K. Gupta and Pankaj, \"Thermo elastic - plastic transition in a\r\nthin rotating disc with inclusion\", Thermal Science, vol. 11, pp 103-\r\n118, 2007.\r\n[17] S.K. Gupta and Pankaj, \"Creep Transition in an isotropic disc\r\nhaving variable thickness subjected to internal pressure\", Proc. Nat.\r\nAcad. Sci. India, Sect. A, vol. 78, Part I, pp. 57-66, 2008.\r\n[18] Gupta S.K. & Pankaj, \"Creep transition in an isotropic disc having\r\nvariable thickness subjected to internal pressure, accepted for\r\npublication in Proceeding of National Academy of Science ,India,\r\nPart-A, 2008.\r\n[19] S.K. Gupta and Sonia Pathak , \"Creep Transition in a thin Rotating\r\nDisc of variable density\", Defence Sci. Journal, vol. 50, pp.147-153,\r\n2000.\r\n[20] I. S. Sokolnikoff, \"Mathematical theory of Elasticity\", McGraw -\r\nHill Book Co., Second Edition, New York, pp. 70-71, 1950.\r\n[21] Pankaj, Some problems in Elastic-plasticity and creep Transition,\r\nPh.D. Thesis, Department of mathematics, H.P. University Shimla,\r\nIndia, pp. 43- 54, June 2006.\r\n[22] F.K.G. Odquist, \"Mathematical theory of creep and creep rupture,\r\nClarendon Press\", Oxford, U.K, 1974.\r\n[23] F.P.J. Rimrott, \"Creep of thick walled tube under internal pressure\r\nconsidering large strain\", J. Appl., Mech., vol. 29, pp. 271, 1959.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 14, 2008"}