{"title":"Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability","authors":"Liping Li, Changchun Liu, Ke Li, Chengyu Liu","volume":57,"journal":"International Journal of Biomedical and Biological Engineering","pagesStart":398,"pagesEnd":403,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/11956","abstract":"Non-stationary trend in R-R interval series is\r\nconsidered as a main factor that could highly influence the evaluation\r\nof spectral analysis. It is suggested to remove trends in order to obtain\r\nreliable results. In this study, three detrending methods, the\r\nsmoothness prior approach, the wavelet and the empirical mode\r\ndecomposition, were compared on artificial R-R interval series with\r\nfour types of simulated trends. The Lomb-Scargle periodogram was\r\nused for spectral analysis of R-R interval series. Results indicated that\r\nthe wavelet method showed a better overall performance than the other\r\ntwo methods, and more time-saving, too. Therefore it was selected for\r\nspectral analysis of real R-R interval series of thirty-seven healthy\r\nsubjects. Significant decreases (19.94\u00b15.87% in the low frequency\r\nband and 18.97\u00b15.78% in the ratio (p<0.001)) were found. Thus the\r\nwavelet method is recommended as an optimal choice for use.","references":"[1] Task Force of the European Society of Cardiology and the North\r\nAmerican Society of Pacing and Electrophysiology, \"Heart rate\r\nvariability: standards of measurement, physiological interpretation and\r\nclinical use,\" Circulation, vol.93, no.5, pp. 1043-1065, 1996.\r\n[2] G. Berntson, J. Bigger, D. Eckberg, et al., \"Heart rate variability: origins,\r\nmethods, and interpretive caveats,\" Psychophysiology, vol.34, no.6, pp.\r\n623-648, 1997.\r\n[3] A. Rajendra, J. Paul, N. Kannathal, et al., \"Heart rate variability: a\r\nreview,\" Med Bio Eng Comput, vol.44, no.12, pp. 1031-1051, 2006.\r\n[4] M. Malik and A. Camm, \"Heart rate variability,\" Clin Cardiol, vol.13,\r\nno.8, pp. 570-576, 1990.\r\n[5] Y. Gang and M. Malik, \"Heart Rate Variability: Measurements and Risk\r\nStratification,\" in Electrical Diseases of the Heart, 1st ed. I. Gussak, C.\r\nAntzelevitch, A. Wilde, et al. Ed. London, Springer, 2008, pp. 365-378.\r\n[6] G. Clifford and L. Tarassenko, \"Quantifying errors in spectral estimates\r\nof HRV due to beat replacement and resampling,\" IEEE Trans Biomed\r\nEng, vol.52, no.4, pp. 630-638, 2005.\r\n[7] N. Lomb, \"Least-squares frequency analysis of unequally spaced data,\"\r\nAstrophys Space Sci, vol.39, no.2, pp. 447-462, 1976.\r\n[8] J. Scargle, \"Studies in astronomical time series analysis. II-Statistical\r\naspects of spectral analysis of unevenly spaced data,\" Astrophys J,\r\nvol.263, pp. 835-853, 1982.\r\n[9] P. Laguna, G. Moody, and R. Mark, \"Power spectral density of unevenly\r\nsampled data by least-square analysis: performance and application to\r\nheart rate signals,\" IEEE Trans Biomed Eng, vol.45, no.6, pp. 698-715,\r\n1998.\r\n[10] D. Litvack, T. Oberlander, L. Camey, et al., \"Time and frequency\r\ndomain methods for heart rate variability analysis: A methodological\r\ncomparison,\" Psychophysiology, vol.32, no.5, pp. 492-504, 1995.\r\n[11] I. Mitov, \"A method for assessment and processing of biomedical signals\r\ncontaining trend and periodic components,\" Med Eng Phys, vol.20, no.9,\r\npp. 660-668, 1998.\r\n[12] M. Tarvainen, P. Ranta-aho, and P. Karjalainen, \"An advanced\r\ndetrending method with application to HRV analysis,\" IEEE Trans\r\nBiomed Eng, vol.49, no.2, pp. 172-175, 2002.\r\n[13] R. Thuraisingham, \"Preprocessing RR interval time series for heart rate\r\nvariability analysis and estimates of standard deviation of RR intervals,\"\r\nComput Meth Programs Biomed, vol.83, no.1, pp. 78-82, 2006.\r\n[14] P. Flandrin, P. Goncalves, and G. Rilling, \"Detrending and denoising\r\nwith empirical mode decomposition\", in Proc. Europ Signal Process\r\nConf., vol.12, 2004, pp. 1581-1584.\r\n[15] P. McSharry, G. Clifford, L. Tarassenko, et al., \"A dynamical model for\r\ngenerating synthetic electrocardiogram signals\", IEEE Trans Biomed\r\nEng, vol.50, no.3, pp. 289-294, 2003.\r\n[16] C. Li, C. Zheng, and C. Tai, \"Detection of ECG characteristic points\r\nusing wavelet transforms\", IEEE Trans Biomed Eng, vol.42, no.1, pp.\r\n21-28, 1995.\r\n[17] J. Mart\u251c\u00a1nez, R. Almeida, S. Olmos, et al., \"A wavelet-based ECG\r\ndelineator: evaluation on standard databases\", IEEE Trans Biomed Eng,\r\nvol.51, no.4, pp. 570-581, 2004.\r\n[18] P. Addison, \"Wavelet transforms and the ECG: a review\", Physiol Meas,\r\nvol.26, pp. R155-R199, 2005.\r\n[19] N. Huang, Z. Shen, S. Long, et al., \"The empirical mode decomposition\r\nand the Hilbert spectrum for nonlinear and non-stationary time series\r\nanalysis\", Proc. Math, Physic Eng Sci, vol.454, no.1971, pp. 903-995,\r\n1998.\r\n[20] Z. Wu, N. Huang, S. Long, et al., \"On the trend, detrending, and\r\nvariability of nonlinear and nonstationary time series\". Proc. Natl Acad\r\nSci, USA, vol.104, no.38, pp. 14889-14894, 2007.\r\n[21] K. Shafqat, S. Pal, and P. Kyriacou. \"Evaluation of two detrending\r\ntechniques for application in heart rate variability\", in Proc. Annu. Int.\r\nConf. IEEE-EMBS. Lyon, vol.29, 2007, pp. 267-270.\r\n[22] D. Knuth, \"The Art of Computer Programming, Volume 1: Fundamental\r\nAlgorithms\", Addison-Wesley Professional, 1997.\r\n[23] H. Resnikoff and R. Wells, \"Wavelet analysis: the scalable structure of\r\ninformation\", New York: Springer-Verlag, 1998.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 57, 2011"}