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Abstract—Support vector clustering (SVC) is an important kernel-
based clustering algorithm in multi applications. It has got two main
bottle necks, the high computation price and labeling piece. In this
paper, we presented a modified SVC method, named Grid–SVC, to
improve the original algorithm computationally. First we normalized
and then we parted the interval, where the SVC is processing,
using a novel Grid–based clustering algorithm. The algorithm parts
the intervals, based on the density function of the data set and
then applying the cartesian multiply makes multi-dimensional grids.
Eliminating many outliers and noise in the preprocess, we apply an
improved SVC method to each parted grid in a parallel way. The
experimental results show both improvement in time complexity order
and the accuracy.

Keywords—Grid–based clustering, SVC, Density function, Radial
basis function.

I. INTRODUCTION

THe process of grouping a set of data points into classes
of similar data is called clustering. Clustering of high

dimensional data points is a famous concept in data mining.
Lately lots of methods are introduced due to various goals and
ideas. Existing clustering algorithms can be classified into five
kinds [1]. The main idea of partitioning methods for a given
database of N nodes are to construct k partitions of the data,
where each partition represents a cluster. K-Means [2] and P-
Median [3], the kernel based clustering methods have such
scheme [1]. That is, it classifies the data into k groups, and
then to make the clusters as compact and separated as possible.
Hierarchical algorithms, consider each data point as a cluster,
and then group them sequentially by similarity measures. And
also the Grid–based methods quantize the object space into
a finite number of cells that form a grid structure. All of the
clustering operations are performed on the grid structure and
model based hypothesize a model for each of the clusters and
find the best fit of the data to the given model. The density
based methods for example DBSCAN [4] are using the idea of
detecting the highest dense areas upon the space the clusters
are relatively belongs [1].
In 2001, Ben-Hur et al. [5] introduced a kernel based clustering
algorithm named SVC. The SVC method used a nonlinear
transform of the data points into Hilbert space [6]. Although
the accuracy, SVCs popularity is degraded by its pricy compu-
tation and poor labeling performance. Different from existing
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modifications that only resolve the two bottle necks [7], [8],
[9].
In this paper, we introduced a novel method named Grid–SVC
which improves the original SVC and makes it more efficient
in both time computing and labeling piece. The algorithm
first applies a novel Grid–based clustering based on density
function on normalized data points in [−0.5, 0.5], then initials
some inaccurate clusters (grid), which are mostly noise–free.
In the initial process it is tried to eliminate the outlier points
and scale down the interval where SVC wants to run. The other
reason is to parallelize the algorithm. We first obtain some
grids (trivial cluster) where have the potential of containing
the dense areas in the environment, Then by applying the SA
algorithm to the labeling piece [7] for the grids separately
and in parallel way, the algorithm optimize the original SVC
algorithm. The experimental results show both time efficiency
and accuracy for the novel algorithm.
In the novel Grid–based clustering algorithm, we introduced
a density function based on radial basis function (RBF). The
radial basis function method for multivariate approximation is
one of the most often applied approaches in modern approx-
imation theory when the task is to approximate irregularly
positioned points in several dimensions [10]. Consequently,
it is no longer a surprise that in many applications, ra-
dial basis functions have been shown to be most useful.
There are many applications especially in the sciences and
in mathematics, they include. For example, mappings of two-
or three-dimensional images such as portraits or underwater
sonar scans into other images for comparison [10]. In this
important application, interpolation comes into play because
some special features of an image may have to be preserved
while others need not be mapped exactly.
In this paper we construct the density function using the RBF,
then approximate it with a polynomial function using famous
Taylor expansion around RBF’s center nodes. The reason is,
the RBFs have a high ability to preform a distribution function
from random initial points.
The structure of this paper is as follows: First we introduced a
novel Grid–based clustering algorithm, based on density func-
tion for each data dimension separately. Then we introduced
SVC and a modification on it. Next we introduce a novel SVC
algorithm (Grid–SVC) which applies the grid based clustering
to improve SVC efficiency and at the end the experimental
result are discussed.

II. RELATED WORKS

In 2005, Lee et al. [9] introduced an improved SVC, a novel
algorithm to improve original SVC. They applied the gradient
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vector of each SV, and produced a algorithm based on that
they improved the labeling piece of SVC. And also in 2009,
Ping et al. [7] introduced improvedSVC (iSVC). The algorithm
reduced the total point involved the process of obtaining
parameter β for the points, using schrödinger equation. The
algorithm divided the interval of data points, based on the
potential, the points had, calculating the schrödinger equation.
Then from each intervals, picks some candidate points, then
applied the SVC for the mentioned points. At the labeling
piece, it used a algorithm named SA (see section 4) which is
applied in our method too.
In 2008, Sun et al. [8] introduced a novel SVC based on k-
means [2]. In the algorithm, firstly, SVC algorithm is employed
to identify some samples as outliers and some others as
intra-cluster points, then the method uses Minimum Spanning
Tree Pruning (MSTP) strategy on those intra-cluster points to
initialize the number of clusters and finally, it runs k-means
on subset without outliers.

III. GRID–BASED CLUSTERING

The grid–based clustering approach uses a multi resolution
grid data structure. It quantizes the object space into a finite
number of cells that form a grid structure on which all of the
operations for clustering are performed. Recently some typical
examples of the Grid–based approach (i.e. PROCLUS [11],
and CLIQUE [12]) are introduced. The CLIQUE algorithm
represents a Grid– and density–based approach for clustering
in high–dimensional data space. The clustering process starts
at single-dimensional subspaces and grows upward to higher-
dimensional ones. CLIQUE parts each dimension, like a grid
structure (non overlap units) and determines whether a cell is
dense based on the number of points it contains, then a cluster
is defined as a maximal set of connected dense grid. In PRO-
CLUS algorithm, instead of starting from single-dimensional
spaces, it starts by finding an initial approximation of the
clusters in the high-dimensional attribute space. Here, we
introduced a novel algorithm based on density function.

A. Grid–based clustering based on density function

To find the best d-dimensional rectangles (grid), contain
the most aggregated areas of data points. We introduced a
novel method base on approximating the distribution of density
function, for each data dimension separately. At first, the
Parallel environment programming technique is discussed and
at the second we obtain the best grids using density function.

1) Parallel environment programming technique: The main
foundation of a parallel environment is the agents. An agent is
a program, which can act independently and autonomously. A
micro agent is an agent, which can perform in a simplified
subset of a whole environment. It can cohabitant, transfer,
or co-allocate the resources with other micro agents. When
a Micro agent’s task is done, it can release its resources or
accept other arrangement. The structures of the micro agent
are distinct for the different system [13].
However, there are two parts generally speaking, which are
MA (Micro Agent) and MAE (Micro Agent Environment).
MAE realizes the performance of the MA among the others,

Fig. 1. Using d agents we can cluster a d-dimensional data set in a parallel
algorithm.

using agent transfer protocol and distributes the executing
environment and service interface to them. It also controls
the security, communication, basic service and so on. MA is
above the MAE and it can be applied into another MAE. MA
can communicate with other MA using agent communication
language.
Fig1 shows a simple MAE of d MAs. The agents work in
parallel. The separator agent normalized the data and separate
the data point of d dimensions into d data sets of one
dimension. For each MA, there is a clustering algorithm which
is applied only for 1-dimensional data set. The separator agent
departed a d-dimensional data set into d times 1-dimensional,
and gives each one to one MA. The cartesian multiplier agent,
consider the output of each agent as an interval and produces
the final grids, using cartesian multiply.

2) Obtaining the best grids using density function: In
previous section, we discussed about d times 1-dimensional
clustering algorithm in parallel, now we introduced an 1-
dimensional clustering algorithm that can be applied by each
MA.
Consider a data set of N data points of d-dimensions as
xi, i = 1..N , for each dimension j, j = 1...d, we approximate
the distribution of density function for dimension j as

Fj(x) =
∑
i

f(rij , ε), (1)

where f(r, ε) is a RBF and rij = ‖xj − xij‖ (see Appendix).
Variant forms of RBF are introduced in TabIII. Because of
simplicity, the Gaussian from (GA) is applied, thus f(r) =
exp(−εr2). Other RBFs can be applied by little differences.
In order to obtain the aggregated areas for each dimension,
we must obtain the intervals where function

Fj(x)−MNj , (2)

is non–negative.
MNj is a positive value and a function of the number of data
points (N ). To obtain the solutions of Eq.(2)≥ 0, we do as
follows, if tn(f(x), x0) be the Taylor expansion of order n,
for function f(x), around point x0, then we can write Eq.(1)
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as

Fj(x) ≈ Pnj (x) =

N∑
i

tn(f(rij , ε), xi). (3)

where Pnj (x) is a polynomial of order n, in jth dimension.
Identifying the two parameters n and ε, is the most important
issue in the approximation process. The ε affects on sharpness
of density function. Thus, decreasing of ε, we have better
approximation with the same n. As n is the order of Taylor
expansion, the higher n leads to less error. To obtain the
solution of Eq.(2), the time complexity order is strongly
depends on n.
In order to improve the approximation process using the Taylor
expansion we normalized the data points in to [−0.5, 0.5]. It
leads the approximation more accurate with lower value of n.
Thus we have

xi =
Ii −mini(Ii)

maxi(Ii)−mini(Ii)
− 0.5, (4)

where Ii is ith input value.
Remark 1: Using the famous Newton-Raphson method, the

roots of Eq.(2)=0 in [−0.5, 0.5], by subsaturation of F (x)
with P (x), with m iterations for α roots, can be obtained
in O(α.m).

Remark 2: Considering the trade off between accuracy and
speed, we can obtain an upper bound for n, as α.m ≤ n ≤ N .
Figure 2 shows the process of obtaining the solution of
Eq.(2)≥ 0. The data set which is used, is the famous Iris
data set by Fisher [14] (In the Experimental results section
the attributes of the data set is discussed in details). The value
of MNj in this Figure is

MNj = N

∫ 0.5

−0.5
f(‖x‖2, ε) + f(‖x− 0.5‖2, ε)dx

2
.

Two followed observations can introduced the whole
algorithm:

Observation 1
Given a normalized data set of N data points of d-dimensions,
the areas of the most aggregated data points in jth dimension,
are of the intervals of form [aij , ai+1j ] where aij s are the roots
of Eq.(2)=0 in [−0.5, 0.5] and ∀x ∈ [aij , ai+1j ], Eq.(2) ≥ 0.
Observation 2
For a given data set, described in previous observation, the d-
dimensional areas (grids) of most aggregated data points are
the cartesian multiply of the intervals obtained from previous
observation (see Figure 3). To obtain the aggregated areas
which are not specifically rectangular we can define hybrid
grids as join of some neighbors which contains many data
points.

IV. SVC ALGORITHM

Support Vector Clustering algorithm looks for the smallest
sphere in the Hilbert space that encloses the image of the data
[6], [5]. This sphere is mapped back to data space, where it
forms a set of contours which enclose the data points. These
contours are interpreted as cluster boundaries.

Fig. 2. Approximating of function Fj(x) by Pj(x), using Taylor expansion.
The data set is the set of PetalWidth of Iris data set, normalized in interval
[−0.5, 0.5]. The solution of Pj(x) − M identifies the aggregated intervals.
We initial the value of ε = 18 for obtaining actual F (x). For the Taylor
expansion we used n = 20, to approximate F (x) and obtain P (x).

Fig. 3. The most aggregated areas for 2 dimensions of Iris data set, obtained
by the Second observation for two of four dimensions of the Iris data set.

A. Description

Given a nonlinear transformation φ for a d-dimensional data
point x ∈ Rd as φ(x), the distance between the transformed
data point and the center of the sphere at the feature space is
defined by:

‖ φ(Xj)− a ‖2≤ R2 + ξi, j = 1...N, ∀i, ξi ≥ 0. (5)

where where ‖ . ‖ is the Euclidean norm, R is the radius, a
is the center of the feature space mapped by the data points
and ξi are the slack variables. To solve the Eq.(5) we apply
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Lagrangian [5]

L = R2 −
∑
j

(R2 + ξj− ‖ φ(Xj)− a ‖2)βj

−
∑
j

ξjμj + C
∑
j

ξj

where βj ≥ 0 and μj ≥ 0 are Lagrange multipliers, C is a
constant, and C

∑
ξj is a penalty term. Setting to zero the

derivative of L with respect to R, a and ξj , respectively, leads
to ∑

j

βj = 1 (6)

a =
∑
j

βjφ(Xj)

βj = C − μj so 0 ≤ βj ≤ C,

for j = 1...N .
The KKT complementarity conditions of Fletcher [15] result
in

ξiμi = 0 (7)
(R2 + ξj− ‖ φ− a ‖2)βj = 0 .

To obtain the βj we eliminate the the variables R, a and μj
, turning the Lagrangian into the Wolfe dual form that is a
function of the variables βj [5]

W = 1−
∑
i

∑
j

βiβjK(xi, xj). (8)

where K(x, y) = exp(−q ‖ x−y ‖2). Derivation with respect
to βj and considering the condition of Eq.(6) leads to

βn×1 = [A]−1
n×nBn×1, β = [β1..βn]

T . (9)

At each point X , we define the distance of its image in feature
space from the center of the sphere

R2(X) =‖ φ(X)− a ‖2 . (10)

In view of quadratic equation and the definition of the kernel
[5] the following is got

R2(X) = 1− 2
∑
j

βjK(Xj , X) + (11)∑
i

∑
j

βiβjK(Xi, Xj).

The radius of the sphere is R = {R(xj)}, xj is support vector.
The contours the enclose the points in data space are defined
by the set {x|R(x) = R}.

B. Cluster Analysis

The number of outlier points is controlled by the parameter
C, NBSV < 1/C , where NBSV is the number of Bounded
Support Vectors (BSVs). Thus 1/(CN) is an upper bound on
the fraction of BSVs, then let 1/(CN) ∈ (0, 1]. The value of
the parameter C is relation to the number of the data points,
the q of the K(x, y) is width parameter of Gaussian kernel
function, and the q and C influences tightness and number of
clustering each other.

Fig. 4. Clustering of a data set containing 183 points using SVC with C =1.
Support vectors are designated by small circles, and cluster assignments are
represented by different gray scales of the data points. (a) q=1, (b) q=20, (c)
q=24, (d) q=48.

Fig. 5. Clustering with and without BSVs. The inner cluster is composed of
50 points generated from a Gaussian distribution. The two concentric rings
contain 150/300 points, generated from a uniform angular distribution and
radial Gaussian distribution. (a) The rings cannot be distinguished when C
=1.0 Shown here is q=3.5, the lowest q value that leads to separation of the
inner cluster. (b) Outliers allow easy clustering. The parameters are p=0.3 and
q=1.0.

Figure 4 shows some examples of data points clustering with
different q and p without BSVs (C = 1). The contour of cluster
is blur, while q increases, and is fine while q decreases, but
it makes the contour of the cluster affix mutually or break up
if q is over-small or over-large. In Figure 5-a without BSVs
contour separation does not occur for the two outer rings for
any value of q. When some BSVs are present, the clusters are
separated easily Figure 5-b. So the two parameters q and C
are the identifier of the cluster’s accuracy and tightness.

C. Modified SVC

In SVC method, the labeling piece is a bottleneck. iSVC [7]
introduced a novel approach, whose idea is to cluster BSVs
firstly, then construct a classifier based on labeled BSVs,
finally label other data using the classifier. This algorithm
is named as SA algorithm in some books. The steps are as
follows
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1) Create affinity matrix H with respect to BSVs where is a
V × V matrix with Hi,j = K(vi, vj), with vi and vj being
BSVs.
2) Normalize H , using cholesky decomposition [16], into
Hc = D−1/2HD−1/2 , with Dii =

∑
j Hi,j .

3) Find S1..Sκ, the κ largest eigenvectors (κ is specified by
the number of eigenvalues that are larger than 1 [17]) and
form Matrix SV×κ = [S1V ×1

...SκV ×1
] then normalize it:

Si,j = S2
i,j/(

∑
j Si,j)

1/2.
4) Treating each row of S as a point in Rκ and cluster it into
κ clusters (using k-means [2]).
5) Label vi as the ith row’s cluster membership.
6) Label other data in terms of its nearest BSV’s label.

The time complexity bottleneck is occurring in the step
(4), where the algorithm clusters the BSVs using k-means. In
the next section we introduce a algorithm which modifies the
SVC and reduced both time complexity and accuracy of the
method.

V. ALGORITHM

In this section we introduced the algorithm of Grid–SVC.
The algorithm has two phases, a preprocess which forms
an approximated of clusters, based on a novel grid based
clustering, introduced in section 3, then applies modified
SVC algorithm for each obtained grid. First we introduce 2
kind of clusters.

Trivial cluster
Cluster ζT is a trivial cluster, if there is no way to separate
it into clusters ζ1 and ζ2, using the algorithm introduced in
section 3 (A d–dimensional grid or hybrid grid).

Non-Trivial cluster
Cluster ζ(q,C) is a non-trivial cluster, if the SVC algorithm
by initial parameters q and C, can divide a Trivial cluster ζT
into clusters ζ(q,c)1 ,..,ζ(q,C),..,ζ(q,C)k

.

In Figure 6 the grids 1 and 2, are the trivial clusters
and the contours are non-trivial. In a top-down hierarchical
clustering scheme [1], as Figure 7, a trivial cluster can be
septated into several non-trivial clusters.
The reduction strategy goes as follows: If a data set of N

data points, would be cluster in O(f(N)), and the data set
contains g, trivial clusters, then using Grid–SVC, we can
cluster the data set in O(f(N/g)).
For a data set of N data points of d-dimensions, we can
develop the algorithm as

(1)form a MAE of d, MAs (Figure 1);
(2)foreach MA, construct the distribution function Fj(x) of
Eq.(1) for jth dimension;
(3)using Taylor expansion, obtain Pj(x) Eq.(1);
(4)obtains the intervals which Eq.(2)≥0;
(5)using the cartesian multiply agent, obtain the trivial
clusters;

Fig. 6. Clustering of iris data set with three different
classes(Setosa,Versicolor,Virginica). Identifying the 2 trivial clusters,
using novel Grid–based clustering.

Fig. 7. Trivial cluster ζT is separated into clusters ζ(q,C)1
...ζ(q,C)k

using
SVC method with initial parameters C and q.

(6)using modified SVC obtain the non-trivial (final) clusters;

As mention previously the labeling piece is a bottleneck
in SVC. In the step (6), we used the modified SVC with
labeling piece, applying SA algorithm. As we apply the SVC
for each trivial cluster separately, the 4th step in SA, changes
to g separated k-means, thus the order of SA reduced to
O(f(N/g, k)) where f(N, k) is the time complexity order of
k-means and g is the number of trivial clusters.

VI. EXPERIMENTAL RESULTS

The software we used to test the result is microsoft.maple.13
[18], with hardware configuration: CPU 1.6 atom dual core, 1
G of ram.
The data set star is showed in Figure 8. The data set contains
of 300 data points of 2 dimensions. Figure 9 shows the density
function of star data set for each dimension. The reason we
tested the algorithm on such data set is to show the high
performance of the algorithm for the data sets which follow
some special patterns. Table I shows the results of Grid–SVC
and original SVC for data set star. The values of q and C are
set separately for the 4 trivial clusters of around the central
circle (the first value in Table I) and the cluster in the central
position (the second value in Table I). The results shows
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Fig. 8. Clustering the data set star, with 5 trivial and 5 non-trivial clusters.

Fig. 9. The density function of data set star for one of its dimensions. In
this Experience we set ε = 100 and n = 90.

improvements both in accuracy and time. SVC misclassifies 2
data points, while the purity of Grid–SVC output clusters is
100%. In this case we used 5 parallel SVC with the labeling
algorithm of section 4. The times in second unit for the 4
clusters in around is 9.3, and for the central cluster is 10.4,
and 2.4 for the initial process. thus we report the maximum
value in Table I). Here, we can eliminate the boundary issue,
thus C = 1.0 for every grid, while for the original SVC we
are forced to consider the BSVs, unless the number of the
clusters would be incorrect.

Figure 6 shows the clustering results of normalized iris data
set. The iris data set introduced by fisher (1936) [14] and
is a standard benchmark in the pattern recognition literature.
The data set contains 150 instances each composed of four

TABLE I
COMPARING THE RUNTIME BETWEEN SVC AND G-SVC APPLYING star
DATA SET. THE UNIT OF TIME IS SECOND. FOR GRID–SVC THERE ARE
FIVE TRIVIAL CLUSTERS. WE ASSUME SAME q AND C FOR THE FOUR

AROUND CLUSTERS AND ONE FOR CENTRAL CLUSTER. SO WE HAVE TWO
VALUES FOR q AND C .

method q C time(sec) misclassification(s)
SVC 10.0 0.004 28.1 2
Grid–SVC 3.2,2.4 1.0,1.0 12.8 0

TABLE II
COMPARING THE RUNTIME BETWEEN SVC AND GRID–SVC APPLYING
IRIS DATA SET. THE UNIT OF TIME IS SECOND. FOR GRID–SVC THERE
ARE TWO TRIVIAL CLUSTERS, SO WE HAVE TWO VALUES FOR q AND C .

method q C time(sec) misclassification(s)
SVC 6.0 0.011 31.3 2
Grid–SVC 4.7,4.2 0.021,1.00 15.1 1

measurements of an iris flower. There are three types of
flowers, represented by 50 instances each. One of the clusters
is linearly separable from the other two by a clear gap in
the probability distribution. The remaining two clusters have
significant overlap. There are 2 trivial clusters and 3 non-
trivial clusters. To obtain the result, we run the algorithm
separately for the two grid by this initial values, q1, C1 for
the grid number 1, and q2, C2 for the grid number 2. In
Table II the result are compared with original SVC. The most
important issue in Iris is the number of misclassifications. Ben-
Hur et al. [19] reported 2 misclassifications, while here we
catch more accuracy in final clusters we less time spending (1
misclassification). The time we obtained the final clusters is
almost half of the time the original SVC costs. Here we applied
2 MAs for each hybrid grids. the time of initialize process is
2.9 seconds. Same as star, we eliminate the boundary issue
for the hybrid grid number 2 (C=1.0). For the hybrid grid
number 1, we assume the BSVs, as (C=0.021). For parameter
q, we decreased the value, in compare with original SVC. The
reasons are first we have less points to cluster in each hybrid
grid, and second, the accuracy issue is relaxed by eliminating
the outlier points.

VII. CONCLUSION

In this paper we introduce a novel algorithm for clustering
high dimensional data sets. The algorithm has two phases.
At first, using d parallel programs, applies a density function
for each dimension based on RBF, then using Taylor approxi-
mation, the algorithm obtain a polynomial form of the density
function. based on that it identifies the intervals which contain
the most data points. Using cartesian multiply, the algorithm
finds the grid (trivial clusters) which are the most aggregated
areas. Then the algorithm applied the SVC algorithm with a
modification on labeling piece and again in parallel way find
the final (non-trivial clusters). The experimental results show
a fine time reduction and also higher accuracy for the real data
sets.
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TABLE III
SOME WELL–KNOWN FUNCTIONS THAT GENERATE RBFS

(r = ‖x− xi‖ = ri), ε > 0

Name of functions Definition
Inverse quadric(IQ) 1/((r/ε)2 + 1)

Multiquadrics (MQ)
√

(r/ε)2 + 1

Inverse multiquadrics (IMQ) 1/(
√

(r/ε)2 + 1)
Gaussian (GA) exp(−ε2r2)

APPENDIX

Radial basis functions: Let R+ = {x ∈ R, x ≥ 0} be the
non-negative half-line and let φ : R+ → R be a continuous
function with φ(0) ≥ 0. A radial basis function on Rd is a
function of the form

φ(‖X −Xi‖), (12)

where X, Xi ∈ Rd and ‖.‖ denotes the Euclidean distance
between X, Xi. If one chooses N points {Xi}Ni=1 in R then
by custom

S(X) =

N∑
i=1

λiφ(‖X −Xi‖); X = (x1...xd) λi ∈ R,

is called a radial basis function as well. Some of the infinitely
smooth RBF choices listed in TabIII.
The standard radial basis functions are categorized into two
major classes [20]:
Class 1. Infinitely smooth RBFs [20], [21]:
These basis functions are infinitely differentiable and heavily
depend on the shape parameter ε e.g. Hardy multiquadric
(MQ), Gaussian(GA), inverse multiquadric (IMQ), and
inverse quadric(IQ)(See Table III).
Class 2. Infinitely smooth (except at centers) RBFs [20],
[21]:
The basis functions of this category are not infinitely
differentiable. These basis functions are shape parameter free
and have comparatively less accuracy than the basis functions
discussed in the Class 1. For example, thin plate spline, etc
[20].
All of the radial basis functions have global support, and in
fact many of them, such as multiquadrics (MQ), do not even
have isolated zeros [22], [23]. The RBFs can be compactly
and globally supported, infinitely differentiable, and contain a
free parameter ε, called the shape parameter [23], [24], [25].
For more basic details about RBFs the interested readers can
refer to the recent books and paper by Buhmann [24], [10]
and Wendland [26], compactly and globally supported; and
convergence rate of the radial basis functions. Too large or
too small shape parameter ε make the RBFs too flat and too
peaked.

In this paper RBFs were applied as density function by
choosing good parameter ε. These functions allow scattered
data in d-dimensions to be easily used in computations.
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