Search results for: Robust regression.
1396 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities
Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper
Abstract:
In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.
Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941395 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation
Authors: J.Dinesh Peter
Abstract:
This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14541394 Robust Control Design and Analysis Using SCILAB for a Mass-Spring-Damper System
Authors: Yoonsoo Kim
Abstract:
This paper introduces an open-source software package SCILAB [1], an alternative of MATLAB [2], which can be used for robust control design and analysis of a typical mass-spring-damper (MSD) system. Using the previously published ideas in [3,4], this popular mechanical system is considered to provide another example of usefulness of SCILAB for advanced control design.
Keywords: Robust Control, SCILAB, Mass-Spring-Damper(MSD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39601393 On The Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study
Authors: Rami A. Maher, Ibraheem K. Ibraheem
Abstract:
This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.
Keywords: Robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621392 Robust Human Rights Governance: Developing International Criteria
Authors: Helen P. Greatrex
Abstract:
Many states are now committed to implementing international human rights standards domestically. In terms of practical governance, how might effectiveness be measured? A facevalue answer can be found in domestic laws and institutions relating to human rights. However, this article provides two further tools to help states assess their status on the spectrum of robust to fragile human rights governance. The first recognises that each state has its own 'human rights history' and the ideal end stage is robust human rights governance, and the second is developing criteria to assess robustness. Although a New Zealand case study is used to illustrate these tools, the widespread adoption of human rights standards by many states inevitably means that the issues are relevant to other countries. This is even though there will always be varying degrees of similarity-difference in constitutional background and developed or emerging human rights systems.Keywords: robust human rights governance, fragile states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17671391 Regression Test Selection Technique for Multi-Programming Language
Authors: Walid S. Abd El-hamid, Sherif S. El-Etriby, Mohiy M. Hadhoud
Abstract:
Regression testing is a maintenance activity applied to modified software to provide confidence that the changed parts are correct and that the unchanged parts have not been adversely affected by the modifications. Regression test selection techniques reduce the cost of regression testing, by selecting a subset of an existing test suite to use in retesting modified programs. This paper presents the first general regression-test-selection technique, which based on code and allows selecting test cases for any programs written in any programming language. Then it handles incomplete program. We also describe RTSDiff, a regression-test-selection system that implements the proposed technique. The results of the empirical studied that performed in four programming languages java, C#, Cµ and Visual basic show that the efficiency and effective in reducing the size of test suit.Keywords: Regression testing, testing, test selection, softwareevolution, software maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331390 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution
Authors: F. Z. Doğru, O. Arslan
Abstract:
In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. The simulation results show that the proposed robust estimators generally outperform the classical estimators in terms of bias and root mean square errors when there are outliers in data.
Keywords: Burr XII distribution, robust estimator, M-estimator, maximum likelihood, least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26581389 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: Dependence analysis, EFSM model, greedy algorithm, regression test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19211388 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method
Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam
Abstract:
Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22861387 Robust Control Synthesis for an Unmanned Underwater Vehicle
Authors: A. Budiyono
Abstract:
The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.
Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20881386 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.
Keywords: Regression model, social mood, stock market prediction, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24341385 TS Fuzzy Controller to Stochastic Systems
Authors: Joabe Silva, Ginalber Serra
Abstract:
This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.Keywords: Fuzzy Systems; Robust Stability, Stochastic Control, Stochastic Process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16981384 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14421383 A Robust Image Watermarking Scheme using Image Moment Normalization
Authors: Latha Parameswaran, K. Anbumani
Abstract:
Multimedia security is an incredibly significant area of concern. A number of papers on robust digital watermarking have been presented, but there are no standards that have been defined so far. Thus multimedia security is still a posing problem. The aim of this paper is to design a robust image-watermarking scheme, which can withstand a different set of attacks. The proposed scheme provides a robust solution integrating image moment normalization, content dependent watermark and discrete wavelet transformation. Moment normalization is useful to recover the watermark even in case of geometrical attacks. Content dependent watermarks are a powerful means of authentication as the data is watermarked with its own features. Discrete wavelet transforms have been used as they describe image features in a better manner. The proposed scheme finds its place in validating identification cards and financial instruments.Keywords: Watermarking, moments, wavelets, content-based, benchmarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461382 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5681381 Distortion Estimation in Digital Image Watermarking using Genetic Programming
Authors: Labiba Gilani, Asifullah Khan, Anwar M. Mirza
Abstract:
This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.Keywords: Blind Watermarking, Genetic Programming (GP), Fitness Function, Discrete Cosine Transform (DCT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101380 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty
Authors: Pulak Swain, A. K. Ojha
Abstract:
Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of E- constraint method.Keywords: Portfolio optimization, multi-objective optimization, E-constraint method, box uncertainty, robust optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6201379 Robust Disturbance Rejection for Left Invertible Singular Systems with Nonlinear Uncertain Structure
Authors: Fotis N. Koumboulis, Michael G. Skarpetis, Maria P. Tzamtzi
Abstract:
The problem of robust disturbance rejection (RDR) using a proportional state feedback controller is studied for the case of Left Invertible MIMO generalized state space linear systems with nonlinear uncertain structure. Sufficient conditions for the problem to have a solution are established. The set of all proportional feedback controllers solving the problem subject to these conditions is analytically determined.
Keywords: System theory, uncertain systems, robust control, singular systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14801378 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay
Authors: Ju H. Park, S.M. Lee
Abstract:
In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.
Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16861377 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.
Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681376 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone
Authors: Ibrahim F. Jasim
Abstract:
This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.
Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17131375 Improved Robust Stability Criteria for Discrete-time Neural Networks
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771374 An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501373 The Relative Efficiency of Parameter Estimation in Linear Weighted Regression
Authors: Baoguang Tian, Nan Chen
Abstract:
A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.
Keywords: Linear weighted regression, Relative efficiency, Mean matrix, Trace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24731372 Design of Robust Fuzzy Logic Power System Stabilizer
Authors: S. A. Taher, A. Shemshadi
Abstract:
Power system stabilizers (PSS) must be capable of providing appropriate stabilization signals over a broad range of operating conditions and disturbance. Traditional PSS rely on robust linear design method in an attempt to cover a wider range of operating condition. Expert or rule-based controllers have also been proposed. Recently fuzzy logic (FL) as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters & operating conditions. In this paper a novel Robust Fuzzy Logic Power System Stabilizer (RFLPSS) design is proposed The RFLPSS basically utilizes only one measurable Δω signal as input (generator shaft speed). The speed signal is discretized resulting in three inputs to the RFLPSS. There are six rules for the fuzzification and two rules for defuzzification. To provide robustness, additional signal namely, speed are used as inputs to RFLPSS enabling appropriate gain adjustments for the three RFLPSS inputs. Simulation studies show the superior performance of the RFLPSS compared with an optimally designed conventional PSS and discrete mode FLPSS.Keywords: Controller design, Fuzzy Logic, PID, Power SystemStabilizer, Robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21361371 Robust Cerebellar Model Articulation Controller Design for Flight Control Systems
Authors: Y. J. Huang, T. C. Kuo, B. W. Hong, B. C. Wu
Abstract:
This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.Keywords: vertical takeoff and landing, cerebellar modelarticulation controller, proportional-derivative control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331370 Internet Purchases in European Union Countries: Multiple Linear Regression Approach
Authors: Ksenija Dumičić, Anita Čeh Časni, Irena Palić
Abstract:
This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analyzed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analyzed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.
Keywords: European Union, Internet purchases, multiple linear regression model, outlier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29551369 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16281368 Robust Nonlinear Control of a Miniature Autonomous Helicopter using Sliding Mode Control Structure
Authors: H. Ifassiouen, M. Guisser, H.Medromi
Abstract:
This paper presents an investigation into the design of a flight control system, using a robust sliding mode control structure, designed using the exact feedback linearization procedure of the dynamic of a small-size autonomous helicopter in hover. The robustness of the controller in the context of stabilization and trajectory tracking with respect to small body forces and air resistance on the main and tail rotor, is analytically proved using Lyapunov approach. Some simulation results are presented to illustrate the performance and robustness of such controller in the presence of small body forces and air resistance.
Keywords: Robust control, sliding mode, stability, Lyapunovapproach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031367 Extended Least Squares LS–SVM
Authors: József Valyon, Gábor Horváth
Abstract:
Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009