Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31203
Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution

Authors: F. Z. Doğru, O. Arslan

Abstract:

In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. The simulation results show that the proposed robust estimators generally outperform the classical estimators in terms of bias and root mean square errors when there are outliers in data.

Keywords: least squares, maximum likelihood, burr xii distribution, robust estimator, m-estimator

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100605

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992

References:


[1] I. W. Burr, “Cumulative frequency functions,” Ann. Math. Stat., vol. 13, no. 2, pp. 215-232, June 1942.
[2] R. N. Rodriguez, and B. Y. Taniguchi, “A new statistical model for predicting customer octane Satisfaction using trained-rater observations,” Trans. Soc. Automotive Eng., pp. 4213–4235, 1980.
[3] S. K. Singh, and G. S. Maddala, “A function for size distribution of incomes,” Econometrica, vol. 44, pp. 963–970, 1976.
[4] J. B. McDonald, and D. O. Richards, “Model selection: Some generalized distributions,” Commun. Stat-Theor M., vol. 16, 1987; (4):1049-1074.
[5] P. W. Jr. Mielke, and E. S. Johnson, “Some generalized beta distributions of the second kind having desirable application features in hydrology and meteorology,” Water Resour. Res., vol. 10, pp. 223-226, April 1974.
[6] R. D. Cook, and M. E. Johnson, “Generalized Burr-Pareto-Logistic distributions with applications to a uranium exploration data set,” Technometrics, vol. 28, no. 2, pp. 123-131, May 1986.
[7] D. R. Wingo, “Maximum likelihood methods for fitting the Burr XII distribution to life test data,” Biometrical J., vol. 25, pp. 77-84, 1983.
[8] D. R. Wingo, “Maximum likelihood estimation of Burr XII distribution parameters under Type II censoring,” Microelectron Reliab., vol. 33, pp. 1251-1257, July 1993.
[9] F. K. Wang, J. B. Keats, and W. J. Zimmer, “Maximum likelihood estimation of the Burr XII distribution with censored and uncensored data,” Microelectron. Reliab., vol. 36, pp. 359-362, March 1996.
[10] W. J. Zimmer, J. B. Keats, and F. K. Wang, “The Burr XII distribution in reliability analysis,” J. Qual. Tech., vol. 30, pp. 386-394, Oct. 1998.
[11] I. W. Burr, and P. J. Cislak, “On a general system of distributions: I. Its curve-shape characteristics; II. The sample median,” J. Am. Statist. Assoc., vol. 63, no. 322, pp. 627-635, June 1968.
[12] E. K. Al-Hussaini, “A characterization of the Burr type XII distribution,” Appl. Math. Lett., vol. 4, no. 1, pp. 59-61, 1991.
[13] R. N. Rodriguez, “A guide to the Burr XII distributions,” Biometrika, vol. 64, no. 1, pp. 129-134, April 1977.
[14] P. R. Tadikamalla, “A look at the Burr and related distributions,” Int. Stat. Rev., vol. 48, no. 3, pp. 337-344, Dec. 1980.
[15] A. M. Hossain, and S. K. Nath, “Estimation of parameters in the presence of outliers for a Burr XII distribution,” Commun. Stat-Theor M., vol. 26, pp. 813-827, 1997.
[16] A. Shah, and D. V. Gokhale, “On maximum product of spacings (mps) estimation for Burr XII distributions,” Commun. Stat-Simul. C., vol. 22, pp. 615-641, 1993.
[17] F. K. Wang, and Y. F. Cheng, “Robust regression for estimating the Burr XII parameters with outliers,” J. Appl. Stat., vol. 37, no. 5, pp. 807- 819, May 2010.
[18] F.Z. Doğru, and O. Arslan, “Optimal B-Robust Estimators for the Parameters of the Burr XII Distribution,” revised, 2015.
[19] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Statist., vol. 35, pp. 73-101, 1964.
[20] D. N. P. Murthy, M. Xie, and R. Jiang, Weibull models, New York: Wiley, 2004.
[21] R. B. Silva, and G. M. Cordeiro, “The Burr XII power series distributions: A new compounding family,” Braz. J. Probab. Stat., to be published, 2015.