
 

 

 
Abstract—The problem of robust disturbance rejection (RDR) 

using a proportional state feedback controller is studied for the case 
of Left Invertible MIMO generalized state space linear systems with 
nonlinear uncertain structure. Sufficient conditions for the problem to 
have a solution are established. The set of all proportional feedback 
controllers solving the problem subject to these conditions is 
analytically determined. 
 

Keywords—System Theory, Uncertain Systems, Robust Control, 
Singular Systems.  

I. INTRODUCTION 
ONSIDER the general class of multivariable, linear 
singular systems, having nonlinear uncertain structure 

[1]: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

E q x t A q x t B q u t D q z t

y t C q x t

= + +

=
            (1) 

 
where 1nx ×∈ , 1 1 1, ,m pu z yζ× × ×∈ ∈ ∈  denote the 

vector of the states, the control inputs, the unknown 
disturbances and the outputs respectively and where  
denotes the set of real numbers. The matrices 

[ ]( ) ( )
n n

E q q
×∈ ℘ , [ ]( ) ( )

n n
A q q

×∈ ℘ , ( )B q ∈  [ ]( )
n m

q
×℘ , 

[ ]( ) ( )
nD q q ζ×∈ ℘  and [ ]( ) ( )

p n
C q q

×∈ ℘  are function matrices 

depending upon the uncertainty vector 1 lq q q⎡ ⎤= ∈⎢ ⎥⎣ ⎦ , 

where  is the uncertainty domain and ( )q℘  is the set of all 
functions of q . The domain  can be any set, while the 
values of the functions of ( )q℘  are considered to be real. The  
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uncertainties 1, , lq q…  do not depend upon the time. Regarding 
the structure of ( ), ( ), ( ), ( )E q A q B q D q  and ( )C q  no limitation 

or specification (continuity, boundness, smoothness, etc.) is 
required, thus covering the cases of nonlinear and distributed 
system's uncertain structure. It is important to mention that the 
matrix ( )E q  may or may not be singular while its singularity 
may depend upon the values of the uncertainties. The singular 
system (1) is assumed to be solvable in the robust sense. 

The problem of disturbance rejection is one of the most 
important control design problems ([2]-[4] and the references 
therein). The problem of disturbance rejection for the case of 
nonuncertain generalized state space systems has attracted 
considerable attention (see [5]-[8] as well as the references 
therein). For the case of left invertible normal linear uncertain 
systems, the problem of robust disturbance rejection has 
extensively been solved in [9], where necessary and sufficient 
conditions for the problem to have a solution have been 
derived. Other familiar results can be found in [10]-[15]. For 
the case of generalized state space linear systems having 
nonlinear uncertain structure, the problem of disturbance 
rejection has not as yet been studied. The familiar problem of 
disturbance rejection with simultaneous data sensitivity has 
been studied in [16]. Also it is important to mention that 
another robust transfer function design problem for 
generalized state space linear systems with nonlinear uncertain 
structure the familiar problem of robust input – output 
decoupling has been studied in [1].  

In the present paper, the problem Robust Disturbance 
Rejection (RDR) for singular linear systems having nonlinear 
uncertain structure is solved, using a proportional state 
feedback controller. Sufficient conditions for the solvability of 
the problem are established and the set of all proportional state 
feedback controllers solving the problem under these 
conditions is derived (Section 3). 

II. PRELIMINARY DEFINITIONS AND PROBLEM FORMULATION 
To system (1) apply the proportional state feedback 

controller  
 

( ) ( ) ( )u t Fx t G tω= +                           (2) 
 

where m nF ×∈  is the feedback matrix, m mG ×∈  is the 
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precompensator matrix and ( )tω  is the vector of external 
inputs. For the controller to be robust the elements of the 
feedback matrix and the precompensator matrix. The 
precompensator is assumed to be invertible in order to ensure 
the linear independence of the influence of the external inputs. 

The resulting closed loop system must be solvable (see [1], 
[5] and [15]) in the robust sense, i.e. 

[ ]det ( ) ( ) ( ) 0sE q A q B q F q− − ≡/ ∀ ∈  where s  is the 

complex frequency. The RDR problem for the case of 
generalized state space systems is stated in the following 
definition:  

Definition 2.1: The RDR problem via a proportional 
feedback controller of the form (2), for generalized state space 
linear systems having nonlinear uncertain structure is solvable 
if there exist controller matrices m nF ×∈ , m mG ×∈  as 
well as an appropriate matrix, let ( , )H s q , with elements being 
rational functions of  s  with real coefficients being nonlinear 
functions of q  such that the transfer function of the overall 
closed loop system satisfies the following equality for every 
q ∈   

 
[ ] 1

( ) ( ) ( ) ( ) ( )C q sE q A q B q F B q G D
− ⎡ ⎤− − =⎢ ⎥⎣ ⎦  

( , ) 0
p

H s q
ζ×

⎡ ⎤= ⎢ ⎥⎣ ⎦
                                (3)  

 
For the controller to be implementable the controller 

matrices must be independent from the uncertainties.             
� 

As already mentioned the open loop system is assumed to 
be robustly solvable i.e. that [ ]det ( ) ( ) 0sE q A q q− ≡/ ∀ ∈ . 

Hence there exist a real function, let ( )qμ  such that 

[ ]det ( ) ( ) ( ) 0q E q A q qμ + ≡/ ∀ ∈ . To facilitate the 

construction of ( )qμ  we mention that its value set can be 
chosen to be a subset of the integer set { }0,1,2, ,n… . 
According to [1] ( )qμ  can be defined as follows 

 

{ } [ ]

[ ]

1

0

0 , :det ( ) 0

:

( )
1,2, , , det ( ) ( ) 0

det ( ) ( ) 0

i

j

q A q

q

q
i n jE q A q

iE q A q

μ −

=

⎧ ∀ ∈ ≠⎪⎪⎪⎪ ∀ ∈⎪⎪⎪⎪= ⎨⎪ ∈ − =⎪⎪⎪⎪⎪ ∧ − ≠⎪⎪⎩

∑…

Q

Q
 

 
Define  
 

[ ] 1
( ) ( ) ( ) ( ) ( )E q q E q A q E qμ −= +  

[ ] 1
( ) ( ) ( ) ( ) ( )B q q E q A q B qμ −= +  

[ ] 1
( ) ( ) ( ) ( ) ( )D q q E q A q D qμ −= +  

 

and [ ] 1
( , ) ( )w s q s qμ −= + . From the robust solvability of the 

open loop system and the robust solvability of the closed loop 
system we observe that the matrix  
 

1
( , ) ( , ) ( ) ( )m nI w s q F w s q I A q B q

−⎡ ⎤+ −⎢ ⎥⎣ ⎦  

 
is well defined and invertible, where jI  is the j  -th dimension 
unity matrix. 

Based on this observation as well as the aforementioned 
definitions and the results in [5], the equation in (3) can be 
rewritten as follows 

 
1

( ) ( , ) ( ) ( ) ( )nC q w s q I A q B q D q
− ⎡ ⎤⎡ ⎤− =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

[ ] [ ]( )( )1 1 1( , ) ( , ) ( ) ,w s q H w s q q q Gμ− − −= − − ×  

{ 1
0 ( , ) ( , ) ( )m nI w s q F w s q I A q

−⎡ ⎤ ⎡ ⎤+ −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ }( ) ( )B q D q⎡ ⎤
⎢ ⎥⎣ ⎦  (4) 

 
As already mentioned the open loop system has been 

assumed to be left invertible, i.e. 
 

[ ] 1
Rank ( ) ( ) ( ) ( ) ,C q sE q A q B q m q

−⎡ ⎤− = ∀ ∈⎢ ⎥⎣ ⎦ Q  

 
and consequently that p m≥ . Using the definitions just 
before (4) the above condition can be rewritten as follows 
 

1
Rank ( ) ( , ) ( ) ( ) ,nC q w s q I A q B q m q

−⎡ ⎤⎡ ⎤− = ∀ ∈⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
Q  

 
As a direct extension of a similar result in [5] and [9] the 
following lemma can be presented.  

Lemma 2.1: A necessary condition for the solvability of the 
RDR problem of the left invertible GSS system (1) via the 
control law (2) is  

 
1

Rank ( ) ( , ) ( ) ( ) ( )nC q w s q I A q B q D q
−⎡ ⎤⎡ ⎤⎡ ⎤− =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

1
Rank ( ) ( , ) ( ) ( )nC q w s q I A q B q m

−⎡ ⎤⎡ ⎤= − =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
, q∀ ∈ Q     (5)  

� 
Based on Lemma 2.1, [5] and [9] it can readily be 

concluded that there exist an invertible for every q ∈ Q  
uncertain matrix, let ( )( , ),J w s q q , such that  

 

( )
1

( , ), ( ) ( , ) ( ) ( ) ( )nJ w s q q C q w s q I A q B q D q
− ⎡ ⎤⎡ ⎤− =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

1

( )

ˆ( )
( , ) ( )

0 n
p m m

C q
w s q I A q

−

− ×

⎡ ⎤
⎢ ⎥ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

( ) ( ) ,B q D q q⎡ ⎤ ∀ ∈⎢ ⎥⎣ ⎦ Q   (6) 

 
where  
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ˆ ˆrank ( ) ( ) ( ) rank ( ) ( ) ,C q B q D q C q B q m q⎡ ⎤⎡ ⎤ ⎡ ⎤= = ∀ ∈⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
Q   (7) 

 
The matrix ( )( , ),J w s q q  can be constructed following a finite 
step explicit algorithm presented in [9] and [17].  

From (6) and (4) we observe that  
 

    ( ) [ ]( )( )1
( , ), ( , ) ( ) ,J w s q q H w s q q qμ− − =  

[ ]( )( )1

( )

ˆ ( , ) ( ) ,

0 p m m

H w s q q qμ−

− ×

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

        (8) 

 
where  

 

[ ]( )( )1ˆRank ( , ) ( ) , ,H w s q q q m qμ−⎡ ⎤− = ∀ ∈⎢ ⎥⎣ ⎦
Q       (9) 

 
The above condition is derived by Lemma 2.1 and the 

robust invertibility of the matrix 
1

( , ) ( , ) ( ) ( )m nI w s q F w s q I A q B q
−⎡ ⎤+ −⎢ ⎥⎣ ⎦ . 

Based on (6) and (8) the equation (4) can be expressed 
equivalently as follows 

 

( )( , ) ( , ),w s q P w s q q
1ˆ( ) ( , ) ( ) ( ) ( )nC q w s q I A q B q D q

− ⎡ ⎤⎡ ⎤− =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

         
1

( , ) ( , ) ( ) ( )m nI w s q F w s q I A q B q
−⎡

⎡ ⎤⎢= + −⎢ ⎥⎢ ⎣ ⎦
⎣

  

1
( , ) ( , ) ( ) ( )nw s q F w s q I A q D q

− ⎤
⎡ ⎤ ⎥−⎢ ⎥ ⎥⎣ ⎦

⎦
  (10) 

 
where  

 

( ) [ ]( )( )
1

1ˆ( , ), ( , ) ( ) ,P w s q q G H w s q q qμ
−

−⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

 
The robust invertibility of the matrix ( )( , ),P w s q q  is 

derived by the invertibility of the precompensator and the 
condition (9). 

Equation (10) involves as unknowns the matrices 
( )( , ),P w s q q  and  F . Clearly it must hold that 
 

( )det ( , ), 0,P w s q q q⎡ ⎤ ≡/ ∀ ∈⎣ ⎦ Q                  (11) 

 
For all matrices ( )( , ),P w s q q  and F  that satisfy (10) with 

( )( , ),P w s q q  robust invertible, the robust invertibility of the 

matrix 
1

( , ) ( , ) ( ) ( )m nI w s q F w s q I A q B q
−⎡ ⎤+ −⎢ ⎥⎣ ⎦  and 

subsequently the solvability of the closed loop system is 
guaranteed for every value of the uncertain parameters. 

Assume that the conditions of Lemma 2.1 are satisfied. 

Then according to the above results the problem has been 
reduced to that of solving equation (10) with respect to 

( )( , ),P w s q q  and F , subject to the constraint (11).  

III. NECESSARY AND SUFFICIENT CONDITIONS 
From the first block of the equation (10) and condition (7) 

we conclude that the rational matrix ( )( , ),P w s q q  must be 
proper with respect to w  and thus it can be expanded in 
negative powers of  w  as follows 

 
( ) ( ) ( )0 1

0 1,P w q P q w P q w−= + +  
 
Using the above expansion, expand both sides of equation 

(10) in negative powers of w , at any particular q ∈ Q . 
Equating the coefficients of like powers of w in both sides of 
the resulting equation, at any particular q ∈ Q , then using a 
similar expression in [5], the equation (11) is equivalent to the 
following set of 2 1n +  algebraic matrix equation  

 
0 1

( ) ( ) ( ) ( )F E q q E q q⎡ ⎡ ⎤ ⎡ ⎤− Δ Δ⎢⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣
2

( ) ( )
n

E q q ⎤⎡ ⎤ Δ +⎥⎢ ⎥⎣ ⎦ ⎦
 

                            0 1 2( ) ( ) ( ) ( )nP q P q P q q⎡ ⎤+ Π =⎢ ⎥⎣ ⎦  

( ) ( )0 0m m m mJ ζ ζ× + × +
⎡ ⎤= ⎢ ⎥⎣ ⎦  (12) 

 
where  

 
0m mJ I ζ×

⎡ ⎤= ⎢ ⎥⎣ ⎦  

( ) ( ) ( )q B q D q⎡ ⎤Δ = ⎢ ⎥⎣ ⎦  

0 2

0

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ0 ( ) ( ) ( )

n
C q E q q C q E q q

q

C q E q q

⎡ ⎤⎡ ⎤ ⎡ ⎤Δ Δ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ Δ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

 
From condition (7), it can easily be observed that there exist 

a matrix let ( )** qΠ  such that  
 

( )

0

**

ˆ( ) ( ) ( )
rank ,

C q E q q
m q

q
ζ

⎡ ⎤⎡ ⎤ Δ⎢ ⎥⎢ ⎥⎣ ⎦ = + ∀ ∈⎢ ⎥
⎢ ⎥Π⎢ ⎥⎣ ⎦

Q       (13) 

 
The construction of such a matrix of the form ( )** qΠ  can 

be done after following the steps of the algorithm proposed in 
[9] for the construction of a respective matrix. Consider the 
block triangular composite matrix 
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*( )qΠ =

0 1 2

0 2 1

0

( ) ( ) ( )

0 ( ) ( )

0 0 ( )

n

n

q q q

q q

q

∗ ∗ ∗

∗ ∗
−

∗

⎡ ⎤Π Π Π
⎢ ⎥
⎢ ⎥Π Π⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Π⎢ ⎥⎣ ⎦

 

 
where 

 
0

0 **

ˆ( ) ( ) ( )
( )

( )

C q E q q
q

q

∗

⎡ ⎤⎡ ⎤ Δ⎢ ⎥⎢ ⎥⎣ ⎦Π = ⎢ ⎥
⎢ ⎥Π⎢ ⎥⎣ ⎦

 

 
ˆ( ) ( ) ( )

( ) , 1,2, ,2
0

j

j

C q E q q
q j n∗

⎡ ⎤⎡ ⎤ Δ⎢ ⎥⎢ ⎥⎣ ⎦Π = =⎢ ⎥
⎢ ⎥⎣ ⎦

…  

 
According to (13) the matrix *( )qΠ  is invertible q∀ ∈ Q . 

Postmultipication of equation (12) by 
1*( )q

−⎡ ⎤Π⎢ ⎥⎣ ⎦ , yields 

 
( ) ( )D DFL q N q= −                             (14a) 

0 2( ) ( ) ( ) ( )n B BP q P q FL q N q⎡ ⎤ = +⎢ ⎥⎣ ⎦             (14b) 

 
where 
 

( ) ( ) , ( ) ( )B B D DL q L q M L q L q M= =  

( ) ( ) , ( ) ( )B B D DN q N q M N q N q M= =  
0 2 1*( ) ( ) ( ) ( ) ( ) ( )

n
L q E q q E q q q

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Δ Δ Π⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 

1*
( )( ) 0 ( )m mN q J qζ

−

× +
⎡ ⎤ ⎡ ⎤= Π⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦  

( )

( )

0

0

T T
m m

B

T T
m m

J

M

J

ζ

ζ

× +

× +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

( )

( )

0

0

T
m

D

T
m

J

M

J

ζ ζ

ζ ζ

× +

× +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
and where  
 

0m
J

I

ζ

ζ

×⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Note that T

mJ J I +
⎡ ⎤ =⎢ ⎥⎣ ⎦ ζ . 

Thus far the problem has been reduced to that of solving the 
linear uncertain equations in (14a) and (14b) under the 
constraints (i) the condition (11) is satisfied and (ii) the matrix 

F  is independent from the uncertainties. 
Before presenting our main result the following definitions 

are presented 
 

[ ]( ) ( ) ( )B D BR q L q L q
⊥=                          (15a) 

( ) ( ) ( ) \ ( ) ( )B B D D BS q N q N q L q L q= −            (15b) 
 
For the definition of [ ]⊥i  and \i i  (where i  denotes the 

argument quantities) see [18]. For their computation a finite 
step explicit algorithm has been proposed in [17].  

Divide ( )BR q  and ( )BS q  into 2 1n +  groups of columns to 
yield  

 

0 2( ) ( ) ( )B nR q R q R q⎡ ⎤= ⎢ ⎥⎣ ⎦                  (16a) 

0 2( ) ( ) ( )B nS q S q S q⎡ ⎤= ⎢ ⎥⎣ ⎦                   (16c) 

 
where the submatrices ( )jR q  and ( )jS q  ( 0,1, ,2j n= … ) 
have m  columns.  

Also define the rational with respect to w matrices 
 
( ),S w q =  

        { }11 ( ) \ ( ) ( ) ( )m D D nw I N q L q wI A q B q
−− ⎡ ⎤= + − ×⎢ ⎥⎣ ⎦  

   { }
11ˆ( ) ( ) ( )nC q wI A q B q

−−⎡ ⎤× −⎢ ⎥⎣ ⎦  (17a) 

( )
1( )

, ( ) ( )
( )

D

n
D

L q
R w q wI A q B q

N q

⊥
−

⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪⎡ ⎤= − ×⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭

 

{ }
11ˆ( ) ( ) ( )nC q wI A q B q

−−⎡ ⎤× −⎢ ⎥⎣ ⎦  (17b) 

 
Using condition (7) it can readily be observed that the 

above rational matrices are proper with respect to w .  
Define  

 

( )
11, ( ) \ ( ) ( ) ( )m D D nS w q w I N q L q wI A q B q

−∗ − ⎡ ⎤= + −⎢ ⎥⎣ ⎦  

   
Using the above definition and the definitions (15)-(17) as 

well as Lemma 3.1 we are now in position to present the 
following theorem. 

Theorem 3.1: The robust disturbance rejection problem is 
solvable for left invertible uncertain generalized state space 
systems via a proportional state feedback controller if the 
following conditions are satisfied 

 

i) 
1

Rank ( ) ( , ) ( ) ( ) ( )nC q w s q I A q B q D q
−⎡ ⎤⎡ ⎤⎡ ⎤− =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

    
1

Rank ( ) ( , ) ( ) ( ) ,nC q w s q I A q B q m
−⎡ ⎤⎡ ⎤= − =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

q∀ ∈ Q  (18) 
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ii)  [ ]
( )

rank rank ( )
( )

D

D
D

L q
L q

N q

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

                                    (19) 

iii) The rational matrix ( , )S w q∗  is robustly invertible. 
Proof: The necessity of (18) comes from Lemma 2.1. 

According to [18], the equation (14a) is solvable with respect 
to F , being independent from the uncertainties, if and only if 

the condition [ ]
( )

rank rank ( )
( )

D

D
D

L q
L q

N q

⎡ ⎤
⎢ ⎥ =⎢ ⎥−⎢ ⎥⎣ ⎦

 is satisfied or 

equivalently if and only if (19) is satisfied. If the condition 
(19) is satisfied then according to [18], the general solution of 
equation (14a) with respect to F  is  

 
[ ]( ) ( ) \ ( )D D DF T L q N q L q

⊥= + −  
 

where T  is an [ ]( rank ( ) )Dm n L q× −   arbitrary matrix 
being  independent from the uncertainties. After observing 
that that  
 

( ) \ ( ) ( ) \ ( )D D D DN q L q N q L q− = −  
 
The general solution of the feedback matrix takes on the form 

 
[ ]( ) ( ) \ ( )D D DF T L q N q L q

⊥= +               (20) 
 
Substituting (20) into (14b) the following general solution of 

0 2( ) ( )nP q P q⎡ ⎤
⎢ ⎥⎣ ⎦  is derived  

 

0 2( ) ( ) ( ) ( )n B BP q P q TR q S q⎡ ⎤ = +⎢ ⎥⎣ ⎦             (21) 

 
where for the derivation of (21) the definitions in (15) have 
been used. Using the block matrix forms in (16) the relation 
(21) can be expressed as follows 
 

( ) ( ) ( )j j jP q TR q S q= +    ( 0,1, ,2j n= … )        (22) 
 
Substitute the general solution of F , given in (20), to the 

first block of equation (10). Then the general solution of 
( ),P w q  is derived 
 

( ) ( ) ( ), , ,P w q TR w q S w q= +                  (23) 
 

For the derivation of (23) the definitions in (17) have been 
used. Clearly, for every  T  there exist a unique ( ),P w q  
given by (23). Observe that (23) is equivalent to (21) and (22).   

Using (23) it can be concluded that a sufficient condition 
for (11) to be satisfied is the condition   

 
[ ]det ( , ) 0,S w q q≡ ∀ ∈ Q                       (24) 

 
i.e. that the matrix ( ),S w q  is robustly invertible. Based on the 
invertibility of the open loop system it is observed that the 
condition (24) is equivalent to the condition (iii) of the 
theorem.                                                                                   
� 

For the definition of [ ]rank i  see [18]. For its computation 
a finite step explicit algorithm has been proposed in [17].  

Based on the proof of the above theorem the following 
theorem can be presented.  

Corollary 3.1: If the conditions of Theorem 3.1 are satisfied 
the general class of the controller matrix F  solving the 
problem is  

 
[ ]( ) ( ) \ ( )D D DF T L q N q L q⊥= +  

 
where T  is an [ ]( rank ( ) )Dm n L q× −  arbitrary matrix 
being independent from the uncertainties and it is restricted to 
satisfy the condition  

 
[ ]det ( , ) ( , ) 0,TR s q S s q q+ ≡ ∀ ∈ Q              (25) 

 
The matrix G  can be any arbitrary invertible matrix being 

independent from the uncertainties.                                        � 

IV. CONCLUSION 
The robust disturbance rejection problem for left invertible 

linear generalized state space systems with nonlinear uncertain 
structure has been studied for the first time. Sufficient 
conditions for the solution of the problem have been 
established (Theorem 3.1). Under these conditions the general 
expressions of the controller matrices solving the problem 
have analytically been determined (Corollary 3.1).  
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