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Abstract—A new relative efficiency in linear model in reference is
instructed into the linear weighted regression, and its upper and lower
bound are proposed. In the linear weighted regression model, for the
best linear unbiased estimation of mean matrix respect to the
least-squares estimation, two new relative efficiencies are given, and
their upper and lower bounds are also studied.
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I. INTRODUCTION
CONSIDERING the linear weighted regression model:

@

E(¢)=0

WY =WX S+ ¢
Cov(g)=%

where Y is the nx1 observation vector, X is the nxp full
column rank design matrix which we are known, g is the
px1 unknown parameter vector, & is the nx1 observation
vector, ¥ is the nxn positive definite covariance matrix,
W =diag(w,w,,..w,), w, #0,i =1,2...n are constants.

There are two kinds of estimate class commonly used of
parameter S :

One is the best linear unbiased estimation (BLUE), that is:
when X is known, the best linear unbiased estimation (BLUE)

of B in the model (1) is: A'=(XWXZ'WX)*XWXZWY and
1 =WX (XWEWX)IXWEWYXW , the
matrix is Cov(£")=c*(X WZ'WX)™;

Another is the least-squares estimation (LSE), that is:
B=(XW2X)IXW2Y and 2=WX(XW2X)XW2YXW |
the covariance matrix is Cov(B)=c?(X W?X) X W W
X(XW?2X)™. Where u is the sequence characteristics root of
W2X .

When n is very large, the calculation of ™ is very

covariance

complicated, or people tend to use the LSE ,5’ instead of the
BLUE g° of B when I is unknown. By the theorem of
Gauss-Markov: Cov(B") < Cov(B). That is oA (XWzwWX)™
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<P (XW2EX)TXW XWX (XW2X)™ It will bring some
losses to the estimation when uses the LSE /;’ instead of the
BLUE p"of . Because of that, the relative efficiency is cited.

Following are commonly used [1]-[3]: el(,g):‘cov(ﬂj) ,
[Cov(/)
(p=TCVs) _covs | where |A| means the
tr(Covp) ’ HCovﬁ

determinant of A, trA means the trace of A, |A| means the

Euclidean mode of A.
However, the above three kinds of relative efficiency all

have their drawbacks. The degree that el(ﬁ) depends on the

matrix X is too low, ez(ﬁ) does not consider the resulting
effect of each component covariance, though the degree that
ez(,é) depends on the matrix X is improved. The sensitivity

of e, (,[;’) is no better than e, (,3) , though it measures the size of

deviation arising from covariance and variance between the
various components of LSE and BLUE.

So that, H.S. Liu et al. had introduced a new relative
1

*\q L
M]q , and also discussed the
tr(Covp)*

relationship between this new relative efficiency and other
three existing relative efficiency. This means that, the
dependence eA(/}) on the matrix X is still too low despite the
increase of the sensitivity. X.M. Liu et al. have defined another
-, . . ~ . A (Covj
new efficiency in the linear model [8]: e, (8) = mmM.
=2 7, (Covp)
This paper could push it into the linear weighted regression
model and study its lower bound.

In addition, this paper has defined two new relative
efficiencies of the mean value matrix & from another

efficiency [4]: e4(ﬁ) =[

perspective: e, (i/ u")=tr(Covi—Covu®)

1
[tr(Covi—Covu™)4]%, and their upper and lower bounds have

given. In the last, it has discussed the relationship between the
several kinds of relative efficiencies.

L e (il )=

I1. THE UPPER AND LOWER BOUNDS OF &, (/5)

Lemma 1: Assume A, B is n order real symmetric matrix
and B>0,If A>B,then 4 (A)>4(B), i=12--,n.[5]
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Lemma 2: Assume A /B is n order symmetric matrix,
there is 4,(B)4 (A’)<4(ABA)<4(B)4(A%) , where
2;(A) means the i characteristic root of the matrix A. [5]

Lemma 3: Assume A isthe nxn Hermit matrix, U is the
nxk column orthogonal array, that is UU =1, , then
A (A< A (VAU <A (A), =12,k . [5]

Lemma 4: In the model of (1), for any two unbiased
estimation 3, B, of g, if Cov(B)>Cov(5,)>0 , then
& () <e(4,) . [7]

Theorem 1: Inthe model of (1), A, S, is any two unbiased
if Cov(B)>Cov(5,)>0,

estimation of £, then there is

&) <e(5,).
Proof: When Cov(f) > Cov(5;,) >0, By the theorem 1:
2, (Cov(B)) > A4 (Cov(p,)) >0 . Then it is believed that

A(Cov(ﬁ ) i,(Cov(ﬂ ) it can obtained that
4 (Cov(f))) i(COV(ﬂﬁ))

.4 (Cov(5")) -i(C v(5)) . . .
I 4 Covy) “ B 2 Covry S S <R

The theorem 1 shows that, the increaser of Cov(ﬁ) , the
more decrease of e, (,é) , Which shows that the greater loss of

ﬁ takes the place of 3" ; Otherwise, the greater of Cov(ﬁ),

the smaller of the loss. According to the theorem
Gauss-Markov, for any linear unbiased estimation of 3, there

is Cov(A")< Cov(ﬁ) , then the upper bound of e, (/) is 1.

A (Z A
Theorem 2: In the model of (1), o )ses(ﬁ)sl. Where
4(2)

4 :/11(2)Hui

= (7).
Proof: In the model of (1), Assume WX = PAQ, that is the

singular ~ value  decomposition of WX Where
PP =1,0Q=QQ = I,A =diag (i, /1, ),

A (Xwewx) "

—

=7 (QAPTPAQ)”

=7 (AP lPA)

= 2,5 (APZPA)
by the lemma 2 and the lemma 3:

A (XWEWX) 2 28 (2)

and because

International Scholarly and Scientific Research & Innovation 8(11) 2014

1400

st
= (xw X)X wIwx (xwex)”

=4[ (QAPPAQ)” Q'AP'EPAQ(QAPPAQ)” |

=4 (A'P'ZPA™) 3
<4 (A?)4(P'EP)

<A (A7) A(

= fhyti (2)

A(Cov(p) L A4 ()
ACovA)  A()

According to the theorem Gauss-Markov, it is believed:
Cov(ﬂ*)<Cov(,§). And by the lemma 1, it achieves that:

It is obtained by (2) and (3):

/LCov(ﬁ*)</1,Cov(ﬁA) , then it can obtain easily that:

e (ﬁ) <1. The theorem 2 has been proved.

In addition, according to the theorem Gauss-Markov, it is
believed that for any unbiased estimation £ of £, the greater
the deviation, the smaller relative efficiency of the estimation.

Theorem 3: el(,é) =le ez(,é’) =le es(ﬁ) =le eS(ﬁ) =1

Proof: Assume Cov(f) = A, Cov(B) =B, then B> A>0.
Thus it is believed that: A (B)> A4 (A), i=1---,p. The
following are obtained:

|A|—|B|c>H/1(A) Hl(B)@A(A) 4(B),

p p

[Al=18] = 247 (A) = 2 4°(B) = A(R) = 4 (B)

i
i=1

trA’ =trB? < /lq(A) Ziq(B)cwl(A) A4 (B).

=1

The theorem 3 has been proved.

I1.  THE UPPER AND LOWER BOUNDS OF & (41 / 1*)

Lemma5: Assume A, B is n order positive definite matrix,
then A,(B)tr(A) <trAB < 4, (B)tr(A) , where A(B), 4,(B)

means the maximum and minimum characteristic root of the
matrix B respectively. [5]

Lemma 6: Assume V, = 4[UAU —(UAU)™], U is the

m
nxk column orthogonal array, and 1<m<k, then YV, <
min(m,n-k)

> (J6 b, .ﬂ) ,

characteristics rootof A,and i=12,--,

where @ is the

sequence

n.[6]
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Lemma 7: Assume A is the nxn Hermit matrix,
A Ay, -+, 4, is the characteristic value of A, and 4 >..> 4,

X is the nxp order matrix and meets XX =1, then

Y. A <trXAX . When X =(g,_,,...00,), the equal sign is

i=n-p+1

established. [5]
Lemma 8: Assume A is the nxn positive definite Hermit

matrix, A,4,,---,4, is the characteristic value of A, and
Az 24,, then for all of the matrix X which meets

XX =1, , there is tr(XAX)™ <Z When X =

p+|

(P pi1s-9,) » the equal sign is establlshed. [5]

Lemma 9: Assume A,B is n order symmetrical matrix,
there is A,(B)4(A) <A (AB) <A (B)A(A) , where A (A)
means the i characteristic root of the matrix A, where
i=12,..n.][5]

Theorem 4: In the model of (1), if r(X) = p then

1
_2 Z M~ Z :un p+|

i=n— Z)+l : (4)
1 min(m,n—
< ? (\/Z \ My |+l)
) i—1

where g ,1=12,...,n is the sequence characteristics root of
W2X ,and thereis 1<m<p.
Proof: By the following formula:
Cov(u") =WX (XWZWX)"XW
Cov(z) =WX (X W2X)X WEWX (X W2X)™X W
It can obtain that:
tr(Covu—Covu’)
= tr[W WX (X W2X ) WX WEWWX (X W2 X)™
X W =W WX (X WW LZ W WX )t X Ww ]
Make WX =S, WEW =T , P, =S(S'S)'S’, R=PR,TP,
—S(ST'S)™S’, then tr(Covi—Covy') =tr(W "RW™) . By
the lemma 5:

ZoWr(R) <e, (il p') < AW )tr(R) ®)
Make Q = PS(PS’PS)_% ,then QQ =1, and
trR =tr[P,TP, —S(ST'S)™S"]
=tr[QQ'TQQ" -Q(QT'Q)"Q1]
=r[QTQ-(QT Q)]
By the lemma 6:

min(m,n—p)
tR< Y (= .+1) ®)

|—1
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Insert (6) into the right equation of (5):

A Y e ™

i=1

By the lemma 7 and the lemma 8:

trR < Z M~ z/un p+i (8)

i=n—-p+1

Insert (8) into the left equation of (5):

_( z Hi— Z:un p+| (9)

i=n-p+1

Combined (7) with (9), the theorem 1 has been proved.
Inference 1: In the model of (1), if r(X) = p, then

1 n p
E( Z 1a)nzﬂi _lea)r:zﬂ’r:—lpﬂ) SeS
i=n-p+ i=
1 min(m,n-p)
S_z (\/_a)l vV n |+1a))
n i l

where 4, is the sequence characteristics root of X , and
1<m<p,i=12,.n.
Proof: Because g = A4, (WXW), by the lemma 5:
oi 2 < A WPE) < @f (10)
wrfj‘n—iﬂ < ﬂ'n—i+1(W22) < a)lzﬂ“n—iﬂ (11)
Insert (10) into (4),
1 % 2 $ 2 1
_2( z a)nﬂ"l_za)n /1n p+|)— ( Z Hi — z:un p+|
a)j_ i=n-p+1 i=1 1 i=n-p+1 i
Insert (11) into (4),
1 min(m,n-p) 2 min(m,n—p) 2

(\/7(01 \/ n— |+1a) )

),

(N

('\/;I \/lun |+1) —iz

i=1 i:l

>

The inference 1 has been proved.

IV. THE UPPER AND LOWER BOUNDS OF e, (i / u*)

Lemma 10: Assume D is the n order positive definite
matrix, then n*"(trD)” <trD” < (trD)", p>1.[9]

Proof: When p=1, the equal sign in the inequality is
established. The following we can proof that when p >1, the
Lemma 10 is founded.
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Assume A, 4,,--, 4,

n

A 2.2 4,, then because of the Hoder inequality [7], it means

Yp | n (p-1)/p
zﬂ’n le/(P—l)
i=1

— (trAp)l/p pl—l/p
That is trA® >n*"(trA)" , and because ( trA)® = (Zil)p >
i=1

is the characteristic value of A, and

that: trA= 2/1 <

=1

n

> 4" =trA®. Then n*®(trA)® <trA® <(trA)*, p>1

i=1
The lemma 10 has been proved.
Theorem 5: In the model of (1), if r(X) = p, then

1

na_1
602 Z Z tun p+|

1 i=n-p+l

Sizmmir:] (\/Z_ \llun—i+l)

i=1

(12)

where w4 is the sequence characteristics root of WX , and
there 1<m<p,i=12,..n
Proof: By the lemma 10:

1
=1
n [tr(Coviz—Covu’) <e, ()

1

=[tr(Cova—Covy’)']® (13)

<tr(Covu—Covu®)
Insert (4) into (13),

min(m,n—p)
e,=tr(Covii—Covur') <= 3 (o .+1)
h i=1
The theorem 5 has been proved.
Inference 2: In the model of (1), if r(X) = p, then
)
n‘ X 2 ST
2 ( a)nﬂ’l _an ﬁ’n—pﬂ)ge?
@ i—n-p+1 i=1 (14)
1 min(m,n—p)
S? (\/7(01 vV n i+1 Dy )
h i=1
where A, is the sequence characteristics root of X , and there is
1<m<p,i=12.n.
Proof: Because g =A4(WZXZW) , By the lemma 9:

a)l‘?ﬂ"l S 2'I(\sz) S wlzﬂ'l ' 22’[1 i+l _ n—| I+1(VV z) < wlzﬂrl i+1
Then on the basis of (10), it is believed that:

,,]_ l,]_

nq n p 2
| Zw ﬂ’n p+|
i=1

(Z i~ Zﬂn o)

i=n-p+1 i=n-p+1
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l min(m,n-p) 1 min(m,n-p)
F (\/Z \/:un |+1) (\/_wl \j n— |+1w)
h i 1

The inference 2 has been proved.
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