An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062556

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449

References:


[1] K. Kashino, T. Kurozumi, and H. Murase, "Quick AND/OR search for multimedia signals based on histogram features", IEICE Trans., J83-D-II, vol.12, 2000, pp. 2735-2744.
[2] S.S. Cheung and A. Zakhor, "Efficient video similarity measurement with video signature", IEEE Trans. on Circuits and System for Video Technology, vol.13, no.1, 2003, pp. 59-74.
[3] A. Hampapur, K. Hyun, and R. Bolle, "Comparison of sequence matching techniques for video copy detection", SPIE. Storage and Retrieval for Media Databases 2002, 4676, San Jose, CA, USA, 2002, pp. 194-201.
[4] V.V. Vinod, H. Murase, "Focused color intersection with efficient searching for object extraction", Pattern Recognition, vol. 30, no.10, 1997, pp. 1787-1797.
[5] K. Kotani, F.F. Lee, Q. Chen, and T. Ohmi, "Face recognition based on the adjacent pixel intensity difference quantization histogram method", Proc. 2003 Int. Symposium on Intelligent Signal Processing and Communication Systems, D7-4, Japan, 2003, pp. 877-880.
[6] AT&T Laboratories Cambridge, The Database of Faces, at http://www.cl. cam.ac.uk/research/dtg/attarchive/facedatabase.html.
[7] L. Agnihotre, N. Dimitrova, T. McGee, S. Jeannin, S. Schaffer, J. Nesvadba, "Evolvable visual commercial detector", IEEE. International Conference on Computer Vision and Pattern Recognition, vol. 2, 2003, pp. 79-84.
[8] R. Lienhart, C. Kuhmunch, W. Effelsberg, "On the detection and recognition of television commercials", In Proc. IEEE Conf. on Multimedia Computing and Systems, 1997, pp. 509-516.
[9] R. Mohan, "Video sequence matching", In Proc. of the International Conference on Audio, Speech and Signal Processing, vol.6, 1998, pp. 3679-3700.
[10] B. Yeo and B. Liu, "Rapid scene analysis on compressed videos", IEEE Trans. on Circuits and Systems for Video Technology, vol.5, no.6, 1995, pp. 533-544.
[11] J. Yuan, L. Duan, Q. Tian, C. Xu, "Fast and Robust Short Video Clip Search Using an Index Structure", 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp.61-68, Oct., 2004.
[12] F. Lee, K. Kotani, Q. Chen, T. Ohmi, "Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature," Proc. of the Int-l Conf. on Image and Vision Computing (ICIVC 2009), pp. 777-780, Paris, Jun. 2009.
[13] M. Douze, et al, "An Image-Based Approach to Video Copy Detection With Spatio-Temporal Post-Filtering", IEEE Transactions on Multimedia, vol. 12, issue 4, pp. 257-266, 2010.
[14] M. C. Yeh and K. T. Cheng, "Video copy detection by fast sequence matching", Proceeding of the ACM International Conference on Image and Video Retrieval (CIVR-09), New York, USA, 2009.
[15] A. Joly, O. Buisson, and C. Frelicot, "Content-based copy retrieval using distortion-based probabilistic similarity search", IEEE Transactions on Multimedia, vol. 9, issue 2, pp. 293-306, 2007.