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A Novel Multiresolution based Optimization
Scheme for Robust Affine Parameter Estimation

J.Dinesh Peter

Abstract—This paper describes a new method for affine param-
eter estimation between image sequences. Usually, the parameter
estimation techniques can be done by least squares in a quadratic
way. However, this technique can be sensitive to the presence
of outliers. Therefore, parameter estimation techniques for various
image processing applications are robust enough to withstand the
influence of outliers. Progressively, some robust estimation functions
demanding non-quadratic and perhaps non-convex potentials adopted
from statistics literature have been used for solving these. Addressing
the optimization of the error function in a factual framework for
finding a global optimal solution, the minimization can begin with
the convex estimator at the coarser level and gradually introduce non-
convexity i.e., from soft to hard redescending non-convex estimators
when the iteration reaches finer level of multiresolution pyramid.
Comparison has been made to find the performance of the results
of proposed method with the results found individually using two
different estimators.

Keywords—Image Processing, Affine parameter estimation, Out-
liers, Robust Statistics, Robust M-estimators

I. INTRODUCTION

Estimation techniques are basic chore in many in computer
vision applications. The ultimate aim of the estimation tech-
niques is to estimate geometric, photometric and semantic
information as accurate as possible. Robust affine parameter
estimation technique has been used here in order to reduce
the impact of outliers towards the estimation of parameters.
In general, the robust estimators do not provide closed form
solutions, and often result in an objective function that is non-
convex. Still some stochastic minimizations such as stochas-
tic relaxation, simulated annealing [1-3] and finite search
methods [4-7] can be explored to find the global minimum,
but they have limited capability for avoiding local minima.
Their performance depends on the initialization quality and
computationally complexity [8]. So we need to find a factual
framework for the minimization scheme that is more effi-
cient, practical and computationally fast. Some of the factual
frameworks in the literatures are in [9-11]. Researchers of
paper [12] derived a convergence sufficient condition using
fourier decomposition for the minimization of the energy
function. But this can be applied for particular case of a
transformation space reduced to global translations. This paper
proposed a novel factual framework minimization with the
help of multiresolution strategy and robust statistics that can be
applicable for all the case of transformation cases. Three robust
M-estimators are suggested in the order from their property of
convexity to non-convexity in Table 1.1Following the idea as
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in the Graduated Non-Convexity (GNC) algorithm described
in [13], Non-convexity is gradually acquainted from convexity
by using the chosen robust M-estimators when multiresolution
pyramid scheme reaches its finer resolution. This method
is named as Acquainted non-convexity multiresolution based
optimization scheme (ANMO). This results in a new and non-
monitored robust affine parameter estimation.

The rest of the paper is organized as follows. Section 2,
explains the methodology followed for the affine parameter
estimation using the proposed approach. Section 3 compares
the estimation accuracies of the proposed scheme with various
parameter estimation techniques. Section 4 concludes the
paper.

II. METHODOLOGY

This paper first gives a description of some robust estimation
methods used to estimate the affine parameters. Second, ex-
plains how the multiresolution pyramid strategy can be utilized
to estimate the precise affine parameters using various robust
estimation functions applied continuously at each level. The
estimated affine parameters are applied to the source image
of next level of resolution, and new affine parameters are
estimated between the newly warped source image and target
image.

A. Estimation function selection

Estimation function is the function of intensities. The prop-
erties that should be satisfied for the estimation functions in
parameter estimation problem have been defined in various
works in the literature. Researchers of papers [14-17] have
preferred using convex potentials in order to ensure the
uniqueness of the solution. But the non-convex potentials may
be suitable for the images containing high range of outliers.
However this option results to some mathematical difficulties
and unstableness associated to the existence of local minima.
Though the convex potentials give closed form solutions, the
influence of outliers is therefore not null. This paper describes
the use of three different robust M-estimators in the parameter
estimation problem. Among these, one is convex potential and
the other two are non-convex potentials (see Table 1).

The chosen convex potential is Charbonnier objective func-
tion ECH [18]. The corresponding influence function is mono-
tonic and bounded. It has an advantage that its weight function
exists in all x and is always strictly positive. Since ECH is
continuous, strictly increasing and differentiability is desirable

1For 128 × 128 input images, there will be three levels of resolution in
multiresolution pyramid scheme.
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TABLE I
ROBUST OBJECTIVE FUNCTIONS AND ITS PROPERTIES

Property Robust function Objective function �(x) Influence function ψ(x)

Convex Charbonnier ECH 2
√

1 + ( x
σ
)2 − 2 Monotone

Nonconvex Hebert-LeahyEHL log(1 + ( x
σ
)2) Soft Redescender

Nonconvex Tukey’s Biweight
ET

(

x2

σ2
− x4

σ4
+

x6

3σ6
| x |≤ σ

1
3

otherwise

)

Hard Redescender

for ψ, the solution to the minimization problem always exists,
avoids mathematical instability and it is unique [19]. Since
the resulting function to be minimized is convex, there is a
guarantee of minimization up to global minimum. Though it
forms a closed form solution, the influence function describes
that outliers will be handled in a little way. Charbonnier
function ECH also satisfies the following conditions suggested
by [18].

* ECH is continuous and strictly decreasing on [0 +∞]
(See Fig.1(a)).

*
Lim

( x
σ )→ +∞ ECH = 0 (For larger distance (Outliers),

Weights are Zero).

*
Lim

( x
σ )→ 0+

ECH = W, 0 < W < +∞ (From smaller

to medium values, considerable weights are provided.)
The other chosen non-convex potentials are Hebert-Leahy
EHL [20] and Tukey’s biweight ET functions. To ensure the
goal of robustness, a redescending norm (Influence function
or ψ-function) is required. From this point of view, hard
redescending norm such as ET is more attractive to outliers.
Fig.1(a) shows the influence functions (ψ-functions) of the
various robust objective functions given in Table.1.

While analyzing the weighting functions of the chosen
robust functions given in Fig.1(b), one can understand that
a hard redescending norm such as Tukey’s biweight function
ET has the horizontal asymptote behavior as the residuals goes
to infinity where the other two functions do not have. Hard
redescending norms yield highly non-convex potentials, which
lead the minimization steps up to local minimum only. So an
efficient factual framework can however be determined in this
instance for reducing the influence of outliers as well as the
minimization up to global minimum. This can be achieved by
employing gradual acquaint of non-convexity from convexity
in the multiresolution based minimization scheme. The method
proposed in next section will explain the same idea for
estimating exact affine parameters.

B. Acquainted Non-convexity Multiresolution based Optimiza-
tion (ANMO)

A coarse to fine strategy is followed in this case. The
chosen convex estimator is used at the coarser resolution. Since
the convex estimators are much sensible to the outliers, non-
convex M-estimators are acquainted from the next resolution
onwards. The main problem of using non-convex estimator is;
the solution is attempted only through several locally minimum
values, so no uniqueness of the solution is found. Since the
previous estimates have placed us within a ”basin of attraction”

of the global minimum [21] and also the iterative and incre-
mental sections of the multiresolution pyramid approach make
the non-convex estimation to find almost optimally minimum
values, thanks to multiresolution scheme. Depends upon the
normal distribution of the weighting functions in the pyramid
generation, one can choose non-convex M-estimators from
their property of soft redescending norm to hard redescending
norm. At the middle levels of Gaussian pyramid scheme,
the impact of outliers are started to visible. So choosing
soft redescending norm at this stage improves the parameter
estimation by finding optimally minimum values. And at
the finer resolution, the impact of outliers is more, so hard
redescending norm is required to reduce the influence of
outliers dramatically. The parameters estimated at the finer
resolution will be used to warp (or project) the original source.

The number of levels of the multiresolution scheme varies
depending on the size of the image. For 64×64 and 128×128
images, gaussian pyramidal scheme creates two and three
levels of resolution respectively. Depending upon the number
of levels of resolution in multiresolution pyramid approach,
different robust norms can be selected for operation. Fig.2
shows the overview of the proposed scheme for optimization
to estimate accurate affine parameters. This methodology
obviously reduces the complexity of Graduated Non-convexity
algorithm proposed by Black and Zisserman [13] and its
application to parameter estimation in [22]. The advantage of
using multiresolution refinement strategy is that it does not
get trapped into a false local minimum. The results show the
power of affine parameter estimation.

C. Robust Affine parameter estimation
Two images from image sequences for affine parameter

estimation are represented as Ix,y,t and Ix,y,t−1.
2 In this

paper, the idea of parameter estimation is based on gradient
constraints (spatial/temporal derivatives) and the basic flow of
the algorithm follows the principles carried on [22]. The error
function chosen here is sum of squared difference (SSD). This
error function is easy to compute and the minimization will
also be simple and it yields good results for the images having
identical intensity transformation. For the spatial neighborhood
Ξ of two images, the error function can be written as:

En(�P )=
∑

x,y∈Ξ

[

Ix,y,t−IP1x+P2y+P5,P3x+P4y+P6,t−1

]

2

(1)

where �P = (�P1, · · · , �P6)
T represents the affine parameters. In

order to give attention to the outliers in an image, a robust

2These unconventional notations are representing any two images from an
image sequence with the temporal parameter t. These notations have been
used only for mathematical consistency.
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Fig. 1. (a)Influence functions (ψ-functions), (b)weight functions of the chosen M-Estimators shown in Table.1

Fig. 2. Overview of Affine parameter estimation using acquainted non-
convexity multiresolution based optimization for 128 × 128 images

objective function is applied in the error function in (2).
Since the error function is nonlinear in its unknown affine
parameters, it cannot be minimized analytically. In order to
simplify the minimization, first order truncated Taylor series
approximation is involved here.

En(�P )≈
∑

x,y∈Ξ
�
{[

Ix,y,t−
(

Ix,y,t+(P1x+P2y+P5−x)Ix
x,y,t+

+(P3x+P4y+P6−y)Iy
x,y,t−It

x,y,t

)]

2

,σ

}

(2)

where Ix
x,y,t and Iy

x,y,t are spatial derivatives and It
x,y,t is

temporal derivative. The robust error function in (2) can be
still reduced to

En(�P )≈
∑

x,y∈Ξ
�
{[

It
x,y,t−(P1x+P2y+P5−x)Ix

x,y,t−

−(P3x+P4y+P6−y)Iy
x,y,t

]

2

,σ

}

(3)

It
x,y,t−(P1x+P2y+P5−x)Ix

x,y,t−(P3x+P4y+P6−y)Iy
x,y,t

=∇Ix,y,t (4)

In this equation,∇Ix,y,t represents the displacement at one
location in an image to the spatial/temporal derivatives of
intensity at the same location and �(∇Ix,y,t, σ) represents the
usage of robust M-estimator function in the error function. And
now the reduced form of the error function can be written as:

En(�P )≈
∑

x,y∈Ξ
�
{[

r−�qT �P

]

2

,σcb

}

(5)

where the vector �q =
(

xIx yIx xIy yIy Ix Iy

)T

and the scalar

r =
(

It+xIx+yIy

)

. This notation has been used for removing
complexity of understanding the expressions. Thus imposing
smoothness constraints on the adjacent points in the image
plane replace the intensity gradient constancy assumption. So
the error on the smoothness assumption Es can be defined as:

Es(�P )=
∑

x,y∈Ξ

(

ϑT

(

(

∂ �P
∂x

)

2

+

(

∂ �P
∂y

)

2

)

)

(6)

ϑT ∈ Z+contains six constant values for each parameters
�P1, · · · , �P6 that is used to control the smoothness constraint.
Now the augmented robust error function is as follows:

E(�P )=�
{

En(�P )+Es(�P ),σ

}

(7)

This error function can now be minimized analytically by
differentiating the error function with respect to its unknowns.
The derivative of En(�P ) and Es(�P ) are as follows

dE(�P )

d �P
=
∑

x,y∈Ξ
ψ

{(

[

r−�qT �P

]

2

+ϑT

[

(

∂ �P
∂x

)

2

+

(

∂ �P
∂y

)

2

])

,σ

}

(8)

Here �′(x, σ) = ψ(x, σ) represents the robust influence func-
tion. Weight functions can be easily calculated from influence
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function itself. Table-2 shows the relationship between weight
and influence functions of the objective functions shown in
Table-1.

Bringing the model into the gradient constraint (spa-
tial/temporal derivatives) and considering all the pixels in the
image at the same time, a linear influence system is solved by
differentiating the error function with respect to its unknown
affine parameters.

dE(�P )

d �P
=

d

(

[

r−�qT �P

]

2

+ϑT

[

(

∂ �P
∂x

)

2

+

(

∂ �P
∂y

)

2

]

d �P

=−2�q(r−�qT �P )+2Φ(
∫

�P−�P ) (9)
∫

�P is the average of �P over a small neighborhood window
in an image which enforces smoothing. Φ is now the diagonal
matrix with the diagonal elements of ϑT . Make this equation
to zero for solving �P

[

∑

x,y∈Ξ

(

�q∗�qT

)

+Φ

]

�P−
[

∑

x,y∈Ξ

(

�q∗r

)

+Φ
∫

�P

]

=0 (10)

By solving this linear error system, �P has been calculated.

�P=

[

∑

x,y∈Ξ

(

�q∗�qT

)

+Φ

]−1
[

∑

x,y∈Ξ

(

�q∗r

)

+Φ
∫

�P

]

(11)

Now the iteration scheme starts by involving robust weight
function W

(

Fei

σ

)

for parameter estimation. An exact estimate
of the error function during minimization can be regulated
using Iterative reweighed least squares technique, where the
weights are being modified on each iteration. Since the
weights are generated by weight functions of various robust
M-estimators, these weights are used to make the algorithm
robust towards the outliers present in an image. The estimated
parameters are fine-tuned on each iteration as follows.

�Pj+1=

[

∑

x,y∈Ξ

(

�q∗W

(

F ei
σ

)

∗�qT

)

+Φ

]−1

[

∑

x,y∈Ξ

(

�q∗W

(

F ei
σ

)

∗r

)

+Φ
∫

�Pj

]

(12)

where �Pj are the estimated parameters at iteration j. W is
a diagonal matrix whose elements are weights of the chosen
robust weight function and the residual Fei = r − �qT �P . At
every level, the scale parameter σ for the weight function is
calculated by using residuals of the error function at each
minimization. The σ has been calculated using [23]

σ=1.48 median

{∣

∣

∣
Fei−median{Fei}

∣

∣

∣

}

(13)

The iteration stops whenever the total squared error in each
iteration does not show a substantial step-down with respect
to the error in the previous iteration, or whenever a maximum
number of iterations are achieved. In each iteration, the error
function will be

E2=

∑I(N)

i=1
WiF e2

i
∑I(N)

i=1
Wi

(14)

At the final step, the error function is minimized conceding
desired affine parameters. Using the method described ear-
lier (ANMO), affine parameters are estimated at each level
of multiresolution pyramid. And now, these parameters are

used to warp the image in the next level of multiresolution
pyramid. This process is repeated at all levels. For computing
spatial/temporal derivatives, this method utilizes some set of
derivative filters described in [24]. Since filtering and differen-
tiation are linear operations, filtering the image directly with
the derivative filters will be potentially improving the method.
These filters are statistically significant and show the results
in a beneficial manner. This work can be easily extended to
3D images in a straight forward manner. Here the number
of parameters is extended to �P = (�P1, · · · , �P12)

T , apart from
radiometric parameters. We have worked only with 2D images
and the results are shown for the same.

III. RESULTS AND DISCUSSION

In this section, the proposed approach of affine parameter
estimation is applied on real images to demonstrate its superior
performance. Gaussian pyramid is constructed for source and
target images using 5-tap low-pass filter. At each levels of
resolution, local affine parameters are estimated for each
neighborhood window of Ξ = 5 × 5 pixels of both source
and target images and these parameters

(

P1, · · · , P6, P7, P8

)

are now used to find the smoothness assumption Es. �P matrix
is convolved over Ξ with 3× 3 smoothing kernel to find

∫

�P .
Maximum of 20 iterations improves smoothness assumption
and only few iterations on each level improve the parameter
estimation to a greater extent. The initial estimate �P(0) is
calculated using least square technique. The proposed method-
ology (ANMO) is adopted on the multiresolution pyramid. The
iterative fine-tune approach at every level of resolution will
also make the updating of estimation parameters to almost
reach the global minimum. And the results show that this
acquainted non-convexity multiresolution based optimization
approach gives an efficient robust affine parameter estimation.
Matlab implementation of this method requires approximately
30 seconds for 128 × 128 images on Pentium IV , 3 GHz,
512 MB RAM in Windows operating system.The affine model
parameters are assigned as:

[

x′

y′

]

=

[

a11 a12

a21 a22

] [

x
y

]

+

[

a13

a23

]

(15)

where a denotes affine parameters. Table 3 shows the esti-
mated affine model parameters for various brain atlas images
which are taken from Harvard medical university website
[25] and the mean error between actual and estimated affine
parameters are also shown. Table 4 shows that the proposed
ANMO based affine parameter estimation has small mean
errors than any other other robust estimation approaches. Fig.3
shows the brain atlas images used for experimental studies.

IV. CONCLUSION

A robust Affine parameter estimation using acquainted
nonconvexity multiresolution based optimization (ANMO) has
been proposed. The superiority of the proposed approach for
robustly estimating the affine parameters has been demon-
strated by experimental comparative study with other robust
estimation techniques. A multiresolution strategy has been fol-
lowed in order to reduce the complexity of the algorithm. With
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TABLE II
INFLUENCE FUNCTIONS AND ITS WEIGHTING FUNCTIONS

Function Influence function
ψ(x, σ) = �′(x, σ)

Weight function
W (x, σ) = �′(x,σ)

x

Charbonnier ECH
x

√

1+( x
σ

)2

1
√

1+( x
σ

)2

Hebert-LeahyEHL
x

1+( x
σ

)2
1

1+( x
σ

)2

Tukey’s Biweight ET x

[

1 − (
x
σ

)
2

]2 [

1 − (
x
σ

)
2

]2

TABLE III
ESTIMATED AFFINE MODEL PARAMETERS USING ANMO APPROACH FOR SOURCE IMAGE OF VARIOUS BRAIN ATLAS IMAGES WITH VARIOUS NOISES

Brain Atlas Image Noise Parameters a11 a12 a21 a22 a13 a23

Pick’s Disease Gaussian Actual 0.9950 0.0995 −0.0995 0.9950 0.0000 0.0000
Estimated 0.9935 −0.0039 0.0009 1.0034 0.0798 −0.0300

Salt&Pepper Actual 0.9950 0.0995 −0.0995 0.9950 0.0000 0.0000
Estimated 1.0011 −0.0002 0.0007 0.9994 0.0649 −0.0432

Huntington Chorea Gaussian Actual 0.9950 0.0995 −0.0995 0.9950 0.0000 0.0000
Estimated 0.9980 0.0024 −0.0017 0.9988 0.0455 −0.0556

Salt&Pepper Actual 0.9950 0.0995 −0.0995 0.9950 0.0000 0.0000
Estimated 0.9968 0.0010 −0.0000 1.0013 0.0408 −0.0419

Cerebrovascular Fatal stroke Gaussian Actual 0.9950 0.0995 −0.0995 0.9950 0.0000 0.0000
Estimated 0.9967 −0.0018 0.0023 0.9972 0.0431 −0.0139

Salt&Pepper Actual 0.9950 0.0995 −0.0995 0.9950 0.0000 0.0000
Estimated 1.0008 0.0020 0.0003 0.9977 0.0567 0.0504
Mean Error 0.033 0.0966 −0.0985 0.0046 0.0551 −0.0392

TABLE IV
MEAN ERRORS OF ESTIMATED AFFINE MODEL PARAMETERS FOR VARIOUS ROBUST ESTIMATION METHODS.

Mean Errors
Methods a11 a12 a21 a22 a13 a23

Tukey’s Biweight 0.0326 0.1822 −0.1278 0.0958 0.1294 −0.1104
Hebert Leahy 0.0126 0.1108 −0.1056 0.0258 0.0987 −0.0754
ANMO 0.0033 0.0966 −0.0985 0.0046 0.0551 −0.0392

(a) (b) (c)

Fig. 3. (a) Pick’s Disease (b) Huntington Chorea (c) Cerebrovascular Fatal
Stroke; Courtesy to:[25]

the objective to estimate the exact affine parameters, this paper
suggests the use of various robust functions that gradually
acquaints nonconvexity as the multiresolution pyramid reaches
its finer level of resolution. This new proposal considerably
improves the power of parameter estimation in all kind of
images and hence one can say that the proposed approach
achieved the worthy level of applicability.
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