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Abstract—In this paper, we propose a robust controller design
method for discrete-time systems with sector-bounded nonlineari-
ties and time-varying delay. Based on the Lyapunov theory, delay-
dependent stabilization criteria are obtained in terms of linear matrix
inequalities (LMIs) by constructing the new Lyapunov-Krasovskii
functional and using some inequalities. A robust state feedback
controller is designed by LMI framework and a reciprocally convex
combination technique. The effectiveness of the proposed method is
verified throughout a numerical example.
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I. INTRODUCTION

ALL physical systems are nonlinear in nature and there
are various kinds of nonlinearities. Among those

nonlinear systems, an important class of nonlinear systems
is the feedback system whose forward path contains a linear
time invariant subsystem and whose feedback path contains
a memoryless nonlinearity. Especially, when the nonlinearity
satisfies certain sector condition, the nonlinear systems are
called Lur’e systems. Stability analysis for the Lur’e systems
has been intensively studied, since Lur’e introduced the
concept of the absolute stability for the Lur’e systems [1-4].
On the other hands, it is well known that time delays of many
communication processes often occur due to the unavoidable
signal propagation delay and cause poor performance or even
instability [5-6]. In practice, the propagation delay frequently
encountered in communication channel. Recently, there are
much research results for the stability analysis of Lur’e
systems with time varying delays [1-4,7]. However, to the
best of authors’ knowledge, there are only a few articles in
the published literature to study the robust controller design
problem of the discrete-time Lur’e system with time-varying
delay [8-9], because the stabilization condition becomes the
nonconvex feasibility problem.
In this paper, we propose an absolute stabilization condition
for discrete-time Lur’e systems with time varying delay.
The condition is derived in terms of LMIs by using equality
constraints for the nonlinear function. The equality constraints
are expressed with convex representation for sector bounds
of the nonlinear function. Also, the proposed condition is
formulated by construction of a new augmented Lyapunov-
Krasovskii’s functional and utilization of reciprocally convex
approach introduced by [6]. In order to obtain a less
conservative delay-dependent stabilization condition, an
extended Lyapunov-Krasovskii functionals is considered. The
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synthesis condition is expressed in terms of LMIs so that
it can be easily verified the effectiveness of the proposed
method by numerical algorithms [10]. Finally, simulation
result demonstrates the benefits of the proposed controller
design methodology for the sector-bounded systems with
time-varying delay.

Notations. R
n denotes the n-dimensional Euclidean space.

R
n×m is the set of all n×m real matrices. For a real matrix

X , X > 0 and X < 0 mean that X is a positive/negative
definite symmetric matrix, respectively. I is an identity
matrix with appropriate dimension and 0 is a null matrix with
appropriate dimension. ‖ · ‖ refers to the Euclidean vector
norm and the induced matrix norm. For symmetric matrices
X and Y , the notation X > Y (respectively, X ≥ Y ) means
that the matrix X − Y is positive definite, (respectively,
nonnegative). diag{· · ·} denotes the block diagonal matrix.

II. PROBLEM FORMULATION

Consider the following discrete-time systems with time-
varying delays

x(k + 1) = Ax(k) +Adx(k − h(k)) +

Ff(x(k)) +Bu(k), (1)
x(k) = ψ(k), ∀ k = −hM ,−hM + 1, ..., 0.

where x(k) ∈ R
n is state vector, A, Ad ∈ R

n×n, B ∈ R
n×m,

F ∈ R
n×n are constant matrices, 0 ≤ h(k) ≤ hM is the

time delay, ψ(·) is a discrete-time vector valued function for
initial values. The nonlinearity of the system f(·) ∈ R

n

is a memoryless vector valued function with certain sector
conditions such as

0 ≤ fi(xi(k))

xi(k)
≤ ai, (2)

where fi(·) is ith element of f(·), ai is an upper bound of the
sector.
For simplicity, define

δi(xi(k)) ≡ fi(xi(k))

xi(k)
, (3)

Δ(k) ≡ diag{δ1(x1(k)), ..., δn(xn(k))}, (4)

then we have
Δ(k) ∈ Co{Δ1,Δ2} (5)

where Δ1 = diag{0, .., 0}, Δ2 = diag{a1, ..., an} and Co
denotes convex hull.
Thus, the nonlinear function f(x(k)) can be expressed as

f(x(k)) = Δ(k)x(k). (6)
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Here, the goal of this paper is to design a stabilizing control
u(k) for (1) with the following structure.

u(k|k) = Kx(k), (7)

where K is the control gain.
The following lemma is useful for deriving a stabilization
criterion.

Lemma 1: [7] For any constant matrix M ∈ R
n×n > 0, a

scalar γ > 0 and a vector function x(k) : R → R
n such that

the following integration is well defined, then
⎛
⎝

k−1∑
l=k−γ

x(l)

⎞
⎠

T

M

⎛
⎝

k−1∑
l=k−γ

x(l)

⎞
⎠ ≤ γ

k−1∑
l=k−γ

xT (l)Mx(l).

(8)

III. MAIN RESULTS

In this section, we derive a stabilization criterion of the
system (1) via LMI formulation.
First of all, define the augmented vectors for simplicity,

y(k) = x(k + 1)− x(k),

ζ(k) =
[
xT (k), xT (k − h(k)), xT (k − hM ),

yT (k), yT (k − h(k)), yT (k − hM ), fT (x(k))
]T
,

and define the matrices
ei ∈ R7n×n(i = 1, ..., 7),

e.g., e2 =
[
0n In 0n 0n 0n 0n 0n

]T
,

Ξ =
[
AG−G+BH AdG 0 −G ,

0 0 FG
]
,

H = KG,

Ω̂1 = [e1 + e4, e3 + e6] P̂ [e1 + e4, e3 + e6]
T

− [e1, e3] P̂ [e1, e3]
T ,

Ω̂2 = [e1, e3] (Q̂1 + Q̂2) [e1, e3]
T

− [e3, e6] Q̂1 [e3, e6]
T − [e2, e5] Q̂2 [e2, e5]

T ,

Ω̂3 = h2
Me4R̂1e

T
4 − (e1 − e2)R̂1(e1 − e2)

T ,

Ω̂4 = h2
M [e1, e3] R̂2 [e1, e3]

T

− hMe1M̂eT1 − hMe3N̂eT3 − hMe2(M̂ − N̂)eT2

− [e1 − e2, e2 − e3]

[
M̂ Ŝ

ŜT N̂

]
[e1 − e2, e2 − e3]

T ,

Ω̂5 = −2e7Λe
T
7 + e7Δ

jGeT1 + e1G
TΔjeT7 ,

Ω̂6 = [e1 + δe4]Ξ + ΞT [e1 + δe4]
T ,

R2a = R2 +

[
0 M

MT 0

]
, R2b = R2 +

[
0 N

NT 0

]
.

Theorem 1: For given hM > 0 and δ > 0, the system
Eq. (1) with the state feedback controller Eq. (7) is stable, if
there exist positive definite matrices P̂ ,Q̂1,Q̂2,R̂1, R̂2,Λ and
matrices M̂, N̂ , Ŝ, H and G satisfying the following LMIs
:

6∑
i=1

Ω̂i < 0, j = 1, 2, (9)

[
M +R1 S

� N +R1

]
≥ 0, R2a > 0, R2b > 0.

(10)

Proof. Consider the following Lyapunov-Krasovskii functional
:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) (11)

where

V1(k) =

[
x(k)

x(k − hM )

]T

P

[
x(k)

x(k − hM )

]
,

V2(k) =

k−1∑
s=k−hM

[
x(s)
y(s)

]T

Q1

[
x(s)
y(s)

]

+

k−1∑
s=k−h(k)

[
e(s)
y(s)

]T

Q2

[
e(s)
y(s)

]
,

V3(k) = hM

−1∑
s=−hM

k−1∑
u=k+s

yT (u)R1y(u) ,

V4(k) = hM

−1∑
s=−hM

k−1∑
u=k+s

[
x(u)
y(u)

]T

R2

[
x(u)
y(u)

]
.

The difference of V1(k) with respect to time along the trajec-
tory of (1) is

ΔV1(k) = ζT (k)Ω1ζ(k) (12)

where Ω1 = [e1 + e4, e3 + e6]P [e1 + e4, e3 + e6]
T −

[e1, e3]P [e1, e3]
T .

Similarly, difference of V2(k) and V3(k) are

ΔV2 = ζT (k)Ω2ζ(k) (13)

where Ω2 = [e1, e3] (Q1 + Q2) [e1, e3]
T −

[e3, e6]Q1 [e3, e6]
T − [e2, e5]Q2 [e2, e5]

T

and

ΔV3(k) = h2My
T (k)R1y(k)

− hM

k−1∑
s=k−h(k)

yT (s)R1y(s).
(14)

The following inequality for the difference of V3(k) can be
obtained by using Lemma 1 :

ΔV3(k) ≤ h2My
T (k)R1y(k)

− (x(k)− x(k − h(k)))TR1(x(k)− x(k − h(k)))

= ζT (k)Ω3ζ(k)

(15)

where Ω3 = h2Me4R1e
T
4 − (e1 − e2)R1(e1 − e2)

T .
The difference of V4(k) is

ΔV4(k) = h2
M

[
x(k)
y(k)

]T

R2

[
x(k)
y(k)

]
− hM

k−1∑
s=k−hM

[
x(s)
y(s)

]T

R2

[
x(s)
y(s)

]

= h2
M

[
x(k)
y(k)

]T

R2

[
x(k)
y(k)

]
− hM

k−1∑
s=k−h(k)

[
x(s)
y(s)

]T

R2

[
x(s)
y(s)

]

− hM

k−h(k)−1∑
s=k−hM

[
x(s)
y(s)

]T

R2

[
x(s)
y(s)

]
.

(16)
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Since the following equalities are always satisfied for any
matrices M and N
0 = xT (k)hMMx(k)− xT (k − h(k))hMx(k − h(k))

− hM

k−1∑
s=k−h(k)

(
yT (s)My(s) + 2xT (s)My(s)

)
,

(17)

0 = eT (k − h(k))hMNx(k − h(k))

− xT (k − hM )hMNx(k − hM )

− hM

k−h(k)−1∑
s=k−hM

(
yT (s)Ny(s) + 2xT (s)Ny(s)

)
,

(18)

we have

ΔV4(k) = h2M

[
x(k)
y(k)

]T
R2

[
x(k)
y(k)

]

− hM

k−1∑
s=k−h(k)

[
x(s)
y(s)

]T
R2a

[
x(s)
y(s)

]

− hM

k−h(k)−1∑
s=k−hM

[
x(s)
y(s)

]T
R2b

[
x(s)
y(s)

]
(19)

− hM

k−1∑
s=k−h(k)

yT (s)My(s)

− hM

k−h(k)−1∑
s=k−hM

yT (k)Ny(k)− eT (k)hMMe(k)

− eT (k − hM )hMNe(k − hM )

− eT (k − h(k))hM (M −N)e(k − h(k))

(20)

By Schur complement and reciprocally convex approach in
[6], the sum terms in (19) is bounded as

− hM

k−1∑
s=k−h(k)

yT (s)My(s)− hM

k−h(k)−1∑
s=k−hM

yT (s)Ny(s)

≤ −ζT (k)

[
eT1 − eT2
eT2 − eT3

]T
[

1
α(k)

M 0

� 1
1−α(k)

N

] [
eT1 − eT2
eT2 − eT3

]
ζ(k)

≤ −ζT (k)

[
eT1 − eT2
eT2 − eT3

]T [
M S
� N

] [
eT1 − eT2
eT2 − eT3

]
ζ(k)

(21)

where α(k) = (hM − h(k))/hM .
For positive definite matrix R2a > 0, R2b > 0, ΔV4(k) is
bounded as

ΔV4(k) ≤ ζ(k)Ω4ζ(k) (22)

where
Ω4 = h2

M [e1, e3]R2 [e1, e3]
T

− hMe1MeT1 − hMe3NeT3 − hMe2(M −N)eT2

− [e1 − e2, e2 − e3]

[
M S
ST N

]
[e1 − e2, e2 − e3]

T .

(23)

The following equality is obtained from the Eq. (6) with any
matrices Λ−1

2fT (x(k))Λ−1

[
Δ(k) 0 0 0 0 0 −I ]

ζ(k) = 0. (24)

On the other hand, from the system (1) and the Leibniz-
Newton formula, the following equation is satisfied with any
matrix G−1 and a positive scalar δ:

2
[
xT (k) yT (k)

] [ G−1

δG−1

]
[
A− I +BK Ad 0 −I 0 0 F

]
ζ(k)

= ζT (k)(e1 + δe4)G
−1Ξζ(k) = 0. (25)

An upper bound of the difference of V (k) is derived by
combining with (24) and (25)

ΔV (k) ≤ ζT (k)(

4∑
i=1

Ωi − 2e7Λ
−1eT7

+ e7Λ
−1Δ(k)eT1 + e1Δ(k)Λ−1eT7

+ (e1 + δe4)G
−1ΞG−1)ζ(k) , ∀ ζ(k) 	= 0.

(26)

Let us define

P̂ = diag{G,G}T P diag{G,G},
Q̂1 = diag{G,G}T Q1 diag{G,G},
Q̂2 = diag{G,G}T Q2 diag{G,G},
R̂1 = GTR1G,

R̂2 = diag{G,G}T R2 diag{G,G},
M̂ = GTMG, N̂ = GTNG,

Ŝ = GTSG,H = KG,

then pre and post multiplying the ma-
trix diag{G, G, G, G, G, G,Λ}T and
diag{G, G, G, G, G, G,Λ} in Eq. (26) leads to
LMI (9). This completes the proof. �

Remark 1. In the stabilization problem for systems with time
delay, one of the important index for checking the enhance-
ment of the feasible region is to get maximum delay bounds
which guarantees the stability of the closed-loop system. In
following numerical example, we will verify the usefulness of
proposed stabilization criterion by finding a solution for the
feasibility problem of Theorem 1.

IV. NUMERICAL EXAMPLE

In this section, to illustrate the effectiveness of the proposed
criterion given in Theorem 1, consider the following a discrete-
time sector bounded system (1) with the following matrices.

A =

[
0.7 0
0 0.7

]
, Ad =

[−0.1 0
0 0.1

]
,

F =

[−0.1 0
0 −0.1

]
, B =

[−0.1
−0.1

]
.

(27)

Let the parameters be set as

Δ2 =

[
1 0
0 1

]
, hM = 26, δ = 11.9, (28)
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then by Theorem 1, we obtain

P =

⎡⎢⎣ 7.4437 1.7704 0.1413 −0.0412
1.7704 7.4437 −0.0412 0.1413
0.1413 −0.0412 0.5078 0.0893
−0.0412 0.1413 0.0893 0.5078

⎤⎥⎦ ,

Q1 =

⎡⎢⎣0.4416 0.1847 0.4417 0.1024
0.1847 0.4416 0.1024 0.4417
0.4417 0.1024 2.0229 −0.1302
0.1024 0.4417 −0.1302 2.0229

⎤⎥⎦ ,

Q̃2 =

⎡⎢⎣0.4610 0.0590 0.0334 0.0220
0.0590 0.4610 0.0220 0.0334
0.0334 0.0220 0.8621 −0.0247
0.0220 0.0334 −0.0247 0.8621

⎤⎥⎦ ,

R1 =

[
0.0177 −0.0069
−0.0069 0.0177

]
,

R2 =

⎡⎢⎣ 0.2853 0.0972 0.0171 −0.0058
0.0972 0.2853 −0.0058 0.0171
0.0171 −0.0058 0.5110 0.2042
−0.0058 0.0171 0.2042 0.5110

⎤⎥⎦ ,

K =
[
2.3555 2.3555

]
Through the example, it is easy to verify that the proposed
method provide a feasible solution for the system (27). This
means that the state feedback controller makes the discrete-
time sector bounded systems with time-varying delay stable.

V. CONCLUSION

In this paper, we consider the problem of robust controller
design for a discrete-time delay systems with sector bounded
nonlinearity. A delay-dependent stabilization criterion has
been proposed in terms of LMIs by using new Lyapunov-
Krasovskii function. We have demonstrated the effectiveness
of the proposed method via a numerical example.
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