Search results for: Asymptotic stability
1293 ψ-exponential Stability for Non-linear Impulsive Differential Equations
Authors: Bhanu Gupta, Sanjay K. Srivastava
Abstract:
In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39371292 On the Existence and Global Attractivity of Solutions of a Functional Integral Equation
Authors: Asadollah Aghajani, Yaghoub Jalilian
Abstract:
Using the concept of measure of noncompactness, we present some results concerning the existence, uniform local attractivity and global attractivity of solutions for a functional integral equation. Our results improve and extend some previous known results and based on weaker conditions. Some examples which show that our results are applicable when the previous results are inapplicable are also included.
Keywords: Functional integral equation, fixed-point, measure of noncompactness, attractive solution, asymptotic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12531291 The Influence of Gravity on The Temporal Instability of Viscoelastic Liquid Curved Jets
Authors: Abdullah Madhi Alsharif, Jamal Uddin
Abstract:
A liquid curved jet has many applications in different industrial and engineering processes, such as the prilling process for generating small spherical pellets (fertilizer or magnesium). The liquids used are usually molten and contain small quantities of polymers and therefore can be modelled as non-Newtonian liquids. In this paper, we model the viscoelastic liquid jet by using the Oldroyd- B model. An asymptotic analysis has been used to simplify the governing equations. Furthermore, the trajectory and a linear temporal stability in the presence of gravity and rotation have been determined.
Keywords: gravity, prilling, rotation, viscoelastic jets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591290 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11281289 Performance of the Strong Stability Method in the Univariate Classical Risk Model
Authors: Safia Hocine, Zina Benouaret, Djamil A¨ıssani
Abstract:
In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.Keywords: Markov Chain, regenerative processes, risk models, ruin probability, strong stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11441288 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die
Authors: Muhammad Sohail Khan, Rehan Ali Shah
Abstract:
The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.Keywords: Wire coating die, Corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10511287 Trimmed Mean as an Adaptive Robust Estimator of a Location Parameter for Weibull Distribution
Authors: Carolina B. Baguio
Abstract:
One of the purposes of the robust method of estimation is to reduce the influence of outliers in the data, on the estimates. The outliers arise from gross errors or contamination from distributions with long tails. The trimmed mean is a robust estimate. This means that it is not sensitive to violation of distributional assumptions of the data. It is called an adaptive estimate when the trimming proportion is determined from the data rather than being fixed a “priori-. The main objective of this study is to find out the robustness properties of the adaptive trimmed means in terms of efficiency, high breakdown point and influence function. Specifically, it seeks to find out the magnitude of the trimming proportion of the adaptive trimmed mean which will yield efficient and robust estimates of the parameter for data which follow a modified Weibull distribution with parameter λ = 1/2 , where the trimming proportion is determined by a ratio of two trimmed means defined as the tail length. Secondly, the asymptotic properties of the tail length and the trimmed means are also investigated. Finally, a comparison is made on the efficiency of the adaptive trimmed means in terms of the standard deviation for the trimming proportions and when these were fixed a “priori". The asymptotic tail lengths defined as the ratio of two trimmed means and the asymptotic variances were computed by using the formulas derived. While the values of the standard deviations for the derived tail lengths for data of size 40 simulated from a Weibull distribution were computed for 100 iterations using a computer program written in Pascal language. The findings of the study revealed that the tail lengths of the Weibull distribution increase in magnitudes as the trimming proportions increase, the measure of the tail length and the adaptive trimmed mean are asymptotically independent as the number of observations n becomes very large or approaching infinity, the tail length is asymptotically distributed as the ratio of two independent normal random variables, and the asymptotic variances decrease as the trimming proportions increase. The simulation study revealed empirically that the standard error of the adaptive trimmed mean using the ratio of tail lengths is relatively smaller for different values of trimming proportions than its counterpart when the trimming proportions were fixed a 'priori'.Keywords: Adaptive robust estimate, asymptotic efficiency, breakdown point, influence function, L-estimates, location parameter, tail length, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20741286 Static Analysis and Pseudostatic Slope Stability
Authors: Meftah Ali
Abstract:
This article aims to analyze the static stability and pseudostatic slope by using different methods such as: Bishop method, Junbu, Ordinary, Morgenstern-price and GLE. The two dimensional modeling of slope stability under various loading as: the earthquake effect, the water level and road mobile charges. The results show that the slope is stable in the static case without water, but in other cases, the slope lost its stability and give unstable. The calculation of safety factor is to evaluate the stability of the slope using the limit equilibrium method despite the difference between the results obtained by these methods that do not rely on the same assumptions. In the end, the results of this study illuminate well the influence of the action of water, moving loads and the earthquake on the stability of the slope.Keywords: Slope stability, pseudo static, safety factor, limit equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33611285 Feedback Stabilization Based on Observer and Guaranteed Cost Control for Lipschitz Nonlinear Systems
Authors: A. Thabet, G. B. H. Frej, M. Boutayeb
Abstract:
This paper presents a design of dynamic feedback control based on observer for a class of large scale Lipschitz nonlinear systems. The use of Differential Mean Value Theorem (DMVT) is to introduce a general condition on the nonlinear functions. To ensure asymptotic stability, sufficient conditions are expressed in terms of linear matrix inequalities (LMIs). High performances are shown through real time implementation with ARDUINO Duemilanove board to the one-link flexible joint robot.Keywords: Feedback stabilization, DMVT, Lipschitz nonlinear systems, nonlinear observer, real time implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621284 Effects of Tap Changing Transformer and Shunt Capacitor on Voltage Stability Enhancement of Transmission Networks
Authors: Pyone Lai Swe, Wanna Swe, Kyaw Myo Lin
Abstract:
Voltage stability has become an important issue to many power systems around the world due to the weak systems and long line on power system networks. In this paper, MATLAB load flow program is applied to obtain the weak points in the system combined with finding the voltage stability limit. The maximum permissible loading of a system, within the voltage stability limit, is usually determined. The methods for varying tap ratio (using tap changing transformer) and applying different values of shunt capacitor injection to improve the voltage stability within the limit are also provided.
Keywords: Load flow, Voltage stability, Tap changingtransformer, Shunt capacitor injection, Voltage stability limit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59761283 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem
Authors: Xin Luo, Jin Huang, Pan Cheng
Abstract:
By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.
Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981282 Asymptotic Approach for Rectangular Microstrip Patch antenna With Magnetic Anisotropy and Chiral Substrate
Authors: Zebiri Chemseddine, Benabdelaziz Fatiha
Abstract:
The effect of a chiral bianisotropic substrate on the complex resonant frequency of a rectangular microstrip resonator has been studied on the basis of the integral equation formulation. The analysis is based on numerical resolution of the integral equation using Galerkin procedure for moment method in the spectral domain. This work aim first to study the effect of the chirality of a bianisotopic substrate upon the resonant frequency and the half power bandwidth, second the effect of a magnetic anisotropy via an asymptotic approach for very weak substrate upon the resonant frequency and the half power bandwidth has been investigated. The obtained results are compared with previously published work [11-9], they were in good agreement.Keywords: Microstrip antenna, bianisotropic media, resonant frequency, moment method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16031281 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.
Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20991280 Motion Planning and Control of Autonomous Robots in a Two-dimensional Plane
Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai
Abstract:
This paper proposes a solution to the motion planning and control problem of a point-mass robot which is required to move safely to a designated target in a priori known workspace cluttered with fixed elliptical obstacles of arbitrary position and sizes. A tailored and unique algorithm for target convergence and obstacle avoidance is proposed that will work for any number of fixed obstacles. The control laws proposed in this paper also ensures that the equilibrium point of the given system is asymptotically stable. Computer simulations with the proposed technique and applications to a planar (RP) manipulator will be presented.Keywords: Point-mass Robot, Asymptotic stability, Motionplanning, Planar Robot Arm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691279 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI
Authors: Elham Amini Boroujeni, Hamid Reza Momeni
Abstract:
Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28821278 A Intelligent Inference Model about Complex Systems- Stability: Inspiration from Nature
Authors: Naiqin Feng, Yuhui Qiu, Yingshan Zhang, Fang Wang
Abstract:
A logic model for analyzing complex systems- stability is very useful to many areas of sciences. In the real world, we are enlightened from some natural phenomena such as “biosphere", “food chain", “ecological balance" etc. By research and practice, and taking advantage of the orthogonality and symmetry defined by the theory of multilateral matrices, we put forward a logic analysis model of stability of complex systems with three relations, and prove it by means of mathematics. This logic model is usually successful in analyzing stability of a complex system. The structure of the logic model is not only clear and simple, but also can be easily used to research and solve many stability problems of complex systems. As an application, some examples are given.Keywords: Complex system, logic model, relation, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13291277 Approximately Jordan Maps and Their Stability
Authors: Nasrin Eghbali
Abstract:
In this paper we consider the approximate Jordan maps and boundedness of these maps. Also we investigate the stability of approximate Jordan maps and prove some stability properties for approximate Jordan maps.
Keywords: Approximate Jordan map, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13321276 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data
Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez
Abstract:
Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.
Keywords: Feature Selection Stability, Spectral data, Data visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261275 Static Voltage Stability Margin Enhancement Using SVC and TCSC
Authors: Mohammed Amroune, Hadi Sebaa, Tarek Bouktir
Abstract:
Reactive power limit of power system is one of the major causes of voltage instability. The only way to save the system from voltage instability is to reduce the reactive power load or add additional reactive power to reaching the point of voltage collapse. In recent times, the application of FACTS devices is a very effective solution to prevent voltage instability due to their fast and very flexible control. In this paper, voltage stability assessment with SVC and TCSC devices is investigated and compared in the modified IEEE 30-bus test system. The fast voltage stability indicator (FVSI) is used to identify weakest bus and to assess the voltage stability of power system.
Keywords: SVC, TCSC, Voltage stability, Fast Voltage Stability Index (FVSI), Reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40751274 A Study of Two Disease Models: With and Without Incubation Period
Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle
Abstract:
The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.
Keywords: Asymptotic stability, incubation period, Routh-Hurwitz criterion, Runge Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6841273 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter
Authors: H. Abderrezek, M. N. Harmas
Abstract:
DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so called terminal scheme to achieve finite time convergence. Lyapounov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.
Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231272 Stability of Interval Fractional-order Systems with Order 0 < α < 1
Authors: Hong Li, Shou-ming Zhong, Hou-biao Li
Abstract:
In this paper, some brief sufficient conditions for the stability of FO-LTI systems dαx(t) dtα = Ax(t) with the fractional order are investigated when the matrix A and the fractional order α are uncertain or both α and A are uncertain, respectively. In addition, we also relate the stability of a fractional-order system with order 0 < α ≤ 1 to the stability of its equivalent fractional-order system with order 1 ≤ β < 2, the relationship between α and β is presented. Finally, a numeric experiment is given to demonstrate the effectiveness of our results.
Keywords: Interval fractional-order systems, linear matrix inequality (LMI), asymptotical stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36161271 Dynamic Voltage Stability Estimation using Particle Filter
Authors: Osea Zebua, Norikazu Ikoma, Hiroshi Maeda
Abstract:
Estimation of voltage stability based on optimal filtering method is presented. PV curve is used as a tool for voltage stability analysis. Dynamic voltage stability estimation is done by using particle filter method. Optimum value (nose point) of PV curve can be estimated by estimating parameter of PV curve equation optimal value represents critical voltage and condition at specified point of measurement. Voltage stability is then estimated by analyzing loading margin condition c stimating equation. This maximum loading ecified dynamically.Keywords: normalized PV curve, optimal filtering method particle filter, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18021270 Influence of Heat Transfer on Stability of Newtonian and Non-Newtonian Extending Films
Authors: Olus N. Boratav, Zheming Zheng, Chunfeng Zhou
Abstract:
The stability of Newtonian and Non-Newtonian extending films under local or global heating or cooling conditions are considered. The thickness-averaged mass, momentum and energy equations with convective and radiative heat transfer are derived, both for Newtonian and non-Newtonian fluids (Maxwell, PTT and Giesekus models considered). The stability of the system is explored using either eigenvalue analysis or transient simulations. The results showed that the influence of heating and cooling on stability strongly depends on the magnitude of the Peclet number. Examples of stabilization or destabilization of heating or cooling are shown for Pe<< 1, and Pe = O(1) cases, for Newtonian and non-Newtonian flows.
Keywords: Extended films, stability, eigen-analysis for stability, transient response, polymer instability, Non-Newtonian fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571269 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter
Authors: H. Bouadi, M. Tadjine
Abstract:
In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.
Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29601268 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators
Authors: Amir Badkoubeh, Guchuan Zhu
Abstract:
This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591267 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17671266 Design of a Reduced Order Robust Convex Controller for Flight Control System
Authors: S. Swain, P. S. Khuntia
Abstract:
In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.
Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201265 High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method
Authors: Pan Cheng, Jin Huang, Guang Zeng
Abstract:
Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.Keywords: boundary integral equation, extrapolation algorithm, aposteriori error estimate, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36461264 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching
Authors: Dezhi Liu Guiyuan Yang Wei Zhang
Abstract:
Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289