Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2492

Search results for: fuzzy differential equations

2492 Strict Stability of Fuzzy Differential Equations with Impulse Effect

Authors: Sanjay K.Srivastava, Bhanu Gupta

Abstract:

In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.

Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
2491 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
2490 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

Authors: Fuziyah Ishak, Siti Norazura Ahmad

Abstract:

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
2489 Adomian Method for Second-order Fuzzy Differential Equation

Authors: Lei Wang, Sizong Guo

Abstract:

In this paper, we study the numerical method for solving second-order fuzzy differential equations using Adomian method under strongly generalized differentiability. And, we present an example with initial condition having four different solutions to illustrate the efficiency of the proposed method under strongly generalized differentiability.

Keywords: Fuzzy-valued function, fuzzy initial value problem, strongly generalized differentiability, adomian decomposition method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
2488 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation

Authors: N. Parandin, M. A. Fariborzi Araghi

Abstract:

in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.

Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
2487 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations

Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov

Abstract:

Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.

Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
2486 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions

Authors: Adil Al-Rammahi

Abstract:

Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.

Keywords: Differential Equations, Laplace Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
2485 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions

Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851
2484 Comparison Results of Two-point Fuzzy Boundary Value Problems

Authors: Hsuan-Ku Liu

Abstract:

This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.

Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
2483 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin

Abstract:

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
2482 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVP­s­) in ordinary differential equations (ODE­s­) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
2481 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers

Authors: Nurhakimah Ab. Rahman, Lazim Abdullah

Abstract:

According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.

Keywords: Dual fuzzy polynomial equations, Interval type-2, Ranking method, Value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2480 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: Integral images, differential images, differential filters, image fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
2479 ψ-exponential Stability for Non-linear Impulsive Differential Equations

Authors: Bhanu Gupta, Sanjay K. Srivastava

Abstract:

In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.

Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3615
2478 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability

Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
2477 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
2476 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
2475 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
2474 On a Class of Inverse Problems for Degenerate Differential Equations

Authors: Fadi Awawdeh, H.M. Jaradat

Abstract:

In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.

Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2473 Projective Synchronization of a Class of Fractional-Order Chaotic Systems

Authors: Zahra Yaghoubi, Nooshin Bigdeli, Karim Afshar

Abstract:

This paper at first presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. After that a drive-response synchronization method with linear output error feedback is presented for “generalized projective synchronization" for a class of fractional-order chaotic systems via a scalar transmitted signal. Genesio_Tesi and Duffing systems are used to illustrate the effectiveness of the proposed synchronization method.

Keywords: Generalized projective synchronization; Fractionalorder;Chaos; Caputo derivative; Differential transform method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2472 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y''' = f(x, y, y', y''), y(α)=y0, y'(α)=β, y''(α)=η with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non – stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep, Self starting, Third Order Ordinary Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
2471 Existence of Solution for Boundary Value Problems of Differential Equations with Delay

Authors: Xiguang Li

Abstract:

In this paper , by using fixed point theorem , upper and lower solution-s method and monotone iterative technique , we prove the existence of maximum and minimum solutions of differential equations with delay , which improved and generalize the result of related paper.

Keywords: Banach space, boundary value problem, differential equation, delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
2470 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming

Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu

Abstract:

In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.

Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
2469 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching

Authors: Dezhi Liu Guiyuan Yang Wei Zhang

Abstract:

Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.

Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
2468 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations

Authors: Ehsan Mahdavi

Abstract:

In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.

Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
2467 Numerical Study of Some Coupled PDEs by using Differential Transformation Method

Authors: Reza Abazari, Rasool Abazari

Abstract:

In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.

Keywords: Coupled Korteweg-de Vries(KdV) equation, Coupled Burgers equation, Coupled Schrödinger equation, differential transformation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
2466 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: Ride comfort, air spring, bus, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
2465 Research of a Multistep Method Applied to Numerical Solution of Volterra Integro-Differential Equation

Authors: M.Imanova, G.Mehdiyeva, V.Ibrahimov

Abstract:

Solution of some practical problems is reduced to the solution of the integro-differential equations. But for the numerical solution of such equations basically quadrature methods or its combination with multistep or one-step methods are used. The quadrature methods basically is applied to calculation of the integral participating in right hand side of integro-differential equations. As this integral is of Volterra type, it is obvious that at replacement with its integrated sum the upper limit of the sum depends on a current point in which values of the integral are defined. Thus we receive the integrated sum with variable boundary, to work with is hardly. Therefore multistep method with the constant coefficients, which is free from noted lack and gives the way for finding it-s coefficients is present.

Keywords: Volterra integro-differential equations, multistepmethods, finite-difference methods, initial value problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
2464 Parallel Block Backward Differentiation Formulas For Solving Large Systems of Ordinary Differential Equations

Authors: Zarina Bibi, I., Khairil Iskandar, O.

Abstract:

In this paper, parallelism in the solution of Ordinary Differential Equations (ODEs) to increase the computational speed is studied. The focus is the development of parallel algorithm of the two point Block Backward Differentiation Formulas (PBBDF) that can take advantage of the parallel architecture in computer technology. Parallelism is obtained by using Message Passing Interface (MPI). Numerical results are given to validate the efficiency of the PBBDF implementation as compared to the sequential implementation.

Keywords: Ordinary differential equations, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
2463 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367