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Abstract—This paper presents a design of dynamic feedback
control based on observer for a class of large scale Lipschitz nonlinear
systems. The use of Differential Mean Value Theorem (DMVT) is to
introduce a general condition on the nonlinear functions. To ensure
asymptotic stability, sufficient conditions are expressed in terms of
linear matrix inequalities (LMIs). High performances are shown
through real time implementation with ARDUINO Duemilanove
board to the one-link flexible joint robot.
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I. INTRODUCTION

IN recent years, modern control and stabilization methods

have found their way into feedback design of nonlinear

systems leading to a wide variety of new concepts and results.

For example, practical engineering systems are supervised

for safety and reliability using state or/and output-feedback

controllers [1], [2]. The study of stabilization problems on

nonlinear continuous-time systems has achieved remarkable

development, see [3]-[7] and the references. Many remarkable

methods have been synthesized. They include, but not

limited to, global input/output linearization techniques for

SISO based on observers [3], [8] and MIMO systems [9],

adaptive backstepping design [10], high-gain observers [11],

[12], extended-state-observers with backstepping [7], [13],

finite-time control [14], neural network control [15] and

fuzzy-logic with non-fragile passive controller [16]. However,

even with this important literature, some limitations exist:

- The consideration of a linear output (in the form y = Cx).

However, a large range of sensors have provided nonlinear

output signals (ultrasound sensors; Anisotropic Magneto

Resistive sensor; Power-Transit sensor...). This adds more

restrictive conditions to the synthesis of the state observer and

control gains.

- The provided synthesis conditions are generally unfeasible

for systems with large Lipschitz constants. Some recent results

have been proposed to cope with this restriction [7], [12] but

remain conservative.

These limitations motivate the design of a simple robust

feedback stabilization based on observer for nonlinear

systems with nonlinear (or linear) output and large Lipschitz

constants. This approach can be easily generalized to nonlinear
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distributed and decentralized systems. The basic idea of this

work is to use the DMVT which allows to write the dynamics

of the estimation error using the nonlinear function terms as a

class of Linear parameter varying (LPV) systems (based on the

works of [17]). Stability of the global error is analyzed using

the convexity principle and the Lyapunov stability theory with

an optimization of simple quadratic cost performance (J). The

observer/control gains guaranteeing the global convergence of

the proposed scheme is computed by LMI. The idea behind the

DMVT is to provide a non restrictive sufficient condition on

nonlinear functions and to assure ∂V/∂t+J < 0 for a standard

Lyapunov function. The consequence is to ensure asymptotic

convergence for large scale Lipschitz nonlinear systems.

This work is organized as follows: In Section II, the problem

will be stated and a preliminary will be presented. Next,

the method of synthesis of the feedback controller based on

observer will be given in details. This method consists in LMIs

feasibility conditions. The last section is devoted to the well

known performance of the presented approach through a real

time implementation using ARDUINO Duemilanove device

with comparisons.

Notations: The following notations will be used throughout

this paper.

- For a square matrix S,S > 0 (S < 0) means that this matrix

is positive definite (negative definite);

- In a matrix, the notation (�) is used for the blocks induced

by symmetry;

- The set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the

convex hull of x, y;

- es(j) =

⎛
⎜⎜⎝

jth

0, ..., 0,
︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s− components

⎞
⎟⎟⎠

T

∈ R
s , s ≥ 1, is the vector of

the canonical basis of Rs.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider that the system described by:{
ẋ = Ax+Bu+ f(t, x)
y = g(x, u)

(1)

where x ∈ R
n, u ∈ R

m and y(t) ∈ R
p are respectively

the state, input and output vectors. A and B are constant

matrices of adequate dimensions. f(t, x) : Rn×R
n → R

n and

g(x, u) : Rn×R
m → R

p are nonlinear vectors fields (assumed

to be differentiable with respect to x). The assumptions and

proposals considered in this paper are as follows:
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Assumption 1. Assume that the Jacobian matrices of f and g
satisfy the following conditions [18]:{

−∞ < f
ij
≤ ∂fi(t,x)

∂xj
≤ f ij < +∞

−∞ < g
ij
≤ ∂gi(x,u)

∂xj
≤ gij < +∞ (2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f
ij
= min

Z∈Rn×Rn

(
∂fi
∂xj

(Z)
)

f ij = max
Z∈Rn×Rp

(
∂fi
∂xj

(Z)
)

g
ij
= min

Z∈Rn×Rm

(
∂gi
∂xj

(Z)
)

gij = max
Z∈Rn×Rm

(
∂gi
∂xj

(Z)
)

Assumption 2. Assume that f(t0, 0) = 0. The following

proposals will be used for the synthesis of observer gain

(transformation of the estimation error from a nonlinear form

to an LPV form) and that of the control.

Proposition 1. Define the sets Mn,n and Fp,n as:

Mn,n = {v = (v11, ..., v1n, ..., vnn)

: f
ij
≤ vij ≤ f ij , i = 1, ..., n; j = 1, ..., n; }

(3)
Fp,n = {ρ = (ρ11, ..., ρ1n, ..., ρpn)

: g
ij
≤ ρij ≤ gij , i = 1, ..., p; j = 1, ..., n; } (4)

The sets Mn,n and Fp,n are a bounded convex domain of

which the sets of vertices are defined by:

VMn,n
= {α = (α11, ..., α1n, ..., αnn) :

αij ∈ {f
ij
, f ij}} (5)

WFp,n
= {β = (β11, ..., β1n, ..., βnn) :

βij ∈ {g
ij
, gij}} (6)

The affine matrices function are:

AL(v) = A+
∑n,n

i,j=1 vijen(i)e
T
n (j)

G(ρ) = ∑p,n
i,j=1 ρijep(i)e

T
n (j)

(7)

where v ∈ Mn,n and ρ ∈ Fp,n.

Proposition 2. (The DMVT for vector valued function [17]).

Let Φ : R
n → R

k. Let a, b ∈ R
n. We assume that Φ is

differentiable on Co(a, b). Then, there are constant vectors

z1, ..., zk ∈ Co(a, b), zi �= a, zi �= b for i = 1, ..., k where:

Φ(a)− Φ(b) =

⎛
⎝ k,n∑

i,j=1

ek(i)e
T
n (j)

∂Φi

∂xj
(zi)

⎞
⎠ (a− b). (8)

The next section is meant to show that there is a simple

solution, to the stabilization problem (the synthesis of an

observer/control matrices gains), based on LMIs problem and

using the principle of DMVT.

III. FEEDBACK CONTROL DESIGN

A. Synthesis of the Observer and Control Gains
The presented observer of the system (1) is given by:{

˙̂x = Ax̂+Bu+ L(y − ŷ) + f(t, x̂)
ŷ = g(x̂, u)

(9)

where x̂ is the state of the observer system and L the

observation gain matrix. Let ε = x − x̂. Then, from

the observer (9) and the system (1), the dynamic of state

estimation error is described by:

ε̇ = Aε− LΔg +Δf (10)

where Δf = f(t, x)− f(t, x̂) and Δg = g(x, u)− g(x̂, u). In

analogy to the approach of [18], and by applying Proposition

2 on the functions f and g, we deduce that there exists

(zi(t), zi(t)) ∈ Co(x, x̂), for all i = 1...n, such that:⎧⎨
⎩

Δf = f(t, x)− f(t, x̂) =
(∑n,n

i,j=1 en(i)e
T
n (j)

∂f
∂xj

(zi)
)
ε

Δg = g(x, u)− g(x̂, u) =
(∑p,n

i,j=1 ep(i)e
T
n (j)

∂g
∂xj

(zi)
)
ε

(11)

For simplicity, we consider the notation:

hij(t) =
∂fi
∂xj

(zi(t))

qij(t) =
∂gi
∂xj

(zi(t), u)

with
h(t) = (h11(t), .., h1n(t), ..hnn(t))
q(t) = (q11(t), .., q1n(t), ..qpn(t))

From (7) and (11), the estimation error dynamics (10)

becomes:

ε̇ = (AL(h(t))− LG(q(t)))ε (12)

Then, the observer design problem of the class of nonlinear

systems (1) is transformed into a simple problem of stability

of a class of LPV systems (12). This is one of the major

advantages of using DMVT for the synthesis of the observer.

A comparative study with solid works proving the advantages

of the use of DMVT is given in [19], [20]. Now, the control

law is given by:

u = −Kx̂ (13)

where K ∈ R
m×n is the control gain matrix of the system.

The development of the nonlinear system, using the control

law (13) leads to:{
ẋ = (A−BK)x+BKε+ f(t, x)
y = g(x, u)

(14)

The term f(t, x) is equivalent to f(t, x) − f(t0, 0) using

Assumption 2. Now, using Proposition 2, then:

f(t, x)− f(t0, 0) =

⎛
⎝ n,n∑

i,j=1

en(i)e
T
n (j)

∂f

∂xj
(ri)

⎞
⎠x

where ri ∈ Co(x, 0). This leads to:Ax+f(t, x) = AC(h(t))x.
Therefore, the augmented system including the overall system
(14) and the dynamics observation error system (12) is given
by a state representation as:[

ẋ
ε̇

]
︸ ︷︷ ︸

˙̃x

=

[ AC(h(t))−BK BK
0 AL(h(t))− LG(q(t))

]
︸ ︷︷ ︸

Φ̃

·
[

x
ε

]
︸ ︷︷ ︸

x̃

(15)

The problem is to find a way to obtain the control matrix

gain K and the observation matrix gain L which can achieve

the stability of the system.

B. Stability Analysis
This section concerns the stability analysis with a

guaranteed cost control of the closed loop system. To ensure
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it, the following criteria (quadratic cost performance that

considers a correlation between the state and the control) are

optimized:

J =

∫ ∞

0

(
[
x u

]T (
Q S
ST R

)[
x u

]
dt (16)

where Q = QT > 0, S > 0 and R = RT > 0 are given
constant weighting matrices. Then, using the dynamic output
feedback control u = −Kx̂, the cost function (16) can be
rewritten as:

J̃ =

∫ ∞

0

⎛
⎜⎜⎜⎜⎜⎝x̃

T

[
Q + KTRK − SK − (SK)T −KTRK + SK

−KTRK + (SK)T KTRK

]
︸ ︷︷ ︸

Q̃

x̃

⎞
⎟⎟⎟⎟⎟⎠ dt

(17)

The control law based on state observer is said to be a

quadratic guaranteed cost control with cost matrix P > 0
for the augmented system (15) and the cost function (16)

if the closed loop system is quadratically stable [21]. The

closed loop value of the cost function (17) satisfies the bound

J < J̃ for all admissible nonlinearities. Initially, the candidate

Lyapunov function V (x̃) is defined by:

V (x̃) = x̃TPx̃ (18)

where Lyapunov matrix P is defined by: P =

[
Pc 0
0 P0

]
.

where Pc = PT
c and P0 = PT

0 are Lyapunov positive definite

symmetric matrices. The aim, in what follows, is to determine

conditions for which:

d

dt
V (x̃) + x̃T Q̃x̃ < 0 (19)

From (18) and according to (19), we have:

(Φ̃x̃)TPx̃+ x̃TP (Φ̃x̃) + x̃T Q̃x̃ < 0 (20)

Then, the condition for the asymptotic stability (using the

assumption of [22]) with a guaranteed level of performance

is given by:

x̃T (Φ̃TP + P Φ̃ + Q̃)x̃ < 0 (21)

Theorem 1. The system (1) is stable in the sense of Lyapunov
and the cost performance (16) is guaranteed if there exists
matrices P = PT ,L and K of appropriate dimensions where
the following LMI is feasible:

Block − diag(F (α1, β1), ..., F (α2qn , β2pn)) < 0,
αi ∈ VMq,n for i = 1, ..., 2qn

βj ∈ WFp,n for j = 1, ..., 2pn

F (αi, βj) = Φ̃(αi, βj)TP + P Φ̃(αi, βj) + Q̃

(22)

To ensure it (F (αi, βj) < 0), (21) can be solved using the

LMI optimization technique. The development of (21) leads

to: (
X11 X12

X21 X22

)
< 0 (23)

where:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X11 = AC(α)TPc + PcAC(α) − KTBTPc − PcBK + Q

+KTRK − (SK)T + KS

X12 = PcBK − KTRK + KS

X21 = XT
12

X22 = AL(α)TP0 + P0AL(α) − G(β)TLTP0 − P0LG(β)
+KTRK

Notice that there are no effective algorithms to solve

simultaneously the control problem and the observer one.

Thus, to solve it, we proceed in two steps. The first-step

consists in multiplying the left-hand side and the right-hand

side of (23) by:(
W 0
0 I

)
,W = WT = P−1

c > 0 (24)

The equation (23) becomes:(
Y11 Y12

Y21 Y22

)
< 0 (25)

Then, using the notations Y = KW and Z = P0L, we have:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y11 = WAC(α)
T +AC(α)W − Y TBT −BY

+WQW + Y TRY + Y TSTW +WSY
Y12 = BK − Y TRK +WSK
Y21 = Y T

12

Y22 = AL(α)
TP0 + P0AL(α)− G(β)TZT − ZG(β)

+KTRK

Now, the determination of the control parameters (designed

by the matrices W and Y ) comes from the resolution of

the matrix inequality Y11 < 0. Using the Schur complement

formula [22], the inequality (Y11 < 0) can be written as (26):

Thereafter, the control gain matrix is given by:

K = YW−1 (27)

The second step is devoted to find the observation gain L.

Then, the determination of P0 and Z is given by substituting

the parameters obtained from the first step and solving the

LMI (25). The observation gain is given by:

L = P−1
0 Z (28)

Remark: The results remain valid with linear output y =
Cx (G(β) becomes C). In addition, this paper considers

the observer dynamics in the closed loop system that can

be generalized to the case of: Distributed systems with N
sub-systems and decentralized systems with the elimination

of the non-linear interconnection function in the synthesis of

the observer.

IV. EXPERIMENTAL RESULTS

Studies are carried out on the real time implementation

of the one-link flexible joint robot [23] to evaluate the

performance of the presented approach with a Digital Signal

Processing device (ARDUINO� Duemilanove board). The

set of equations is given by:{
ẋ(t) = Acx(t) +Bcu(t) + fc(x(t))
y(t) = gc(x(t), u(t))

(29)

with:

• x = [θm ωm θl ωl]
T , where θm and θl are, respectively,

the angles of rotations of the motor and link. ωm and ωl

are their angular velocities.

• Ac =

⎡
⎢⎣

−10 1 0 0
−48.6 −1.26 48.6 0

0 0 −22 1
1.95 0 −19.5 −6

⎤
⎥⎦;Bc =

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:7, 2016 

1397International Scholarly and Scientific Research & Innovation 10(7) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
7,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

05
57

5.
pd

f



⎡
⎢⎢⎢⎢⎣

WAC(α)
T +AC(α)W − Y TBT −BY W Y T Y T W

� −Q−1 0 0 0
� 0 −R−1 0 0
� 0 0 −(ST )+ 0
� 0 0 0 −S+

⎤
⎥⎥⎥⎥⎦ < 0 (26)

⎡
⎢⎣

0
1
0
0.5

⎤
⎥⎦;gc(x, u) =

[
x1

sin(2x2)

]
;fc(x(t)) =

⎡
⎢⎣

0
0
0
γf sin(x3)

⎤
⎥⎦

The use of a sensor with nonlinear output as in this case

is mainly due to the insertion of signal-conditioners (such

as adding a oscillator to have a sinusoidal outputs using

inductive or magnetic sensor for the measurement of the

angular velocity). The initial conditions for the system and

observer have been chosen as (with Lipschitz constant γf =
3.33): xk(0) = [0.5 0.5 0.5 0.5]T and x̂k(0) = [−0.5 −
0.5 − 0.5 − 0.5]T . Applying the DMVT approach, we

obtain M1j = 0 for all j = 1, 2, 3 and M14 = γfcos(z3).
Then, the set of vertices VM1,4 can be reduced to VH1,4 =
{−γf ,+γf}. Similarly for function g(x, u): g

2,2
= −2

and g2,2 = 2. Then, by solving LMIs of Theorem 1 we

obtain: K =
[ −40.0473 −17.8391 −6.6076 42.08

]

and L =

⎡
⎢⎢⎣

0.0495 −1.8578
0.0385 21.3563
−0.0259 −3.0453
−0.0505 −3.0309

⎤
⎥⎥⎦ where Q = 0.001I4,

R = 0.01 and S = [0.1 0.1 0.1 0.1]T . For the real time

implementation on the ”ARDUINO� Duemilanove board”,

the mode ”ARDUINO Target interface mode” is used. In this

mode of programming, Arduino board becomes a target of

the Simulink� code of MATLAB� compiled with the tool

”Run on Target Hardware”. It can also be managed online via

the USB port of the PC (External Mode Enable). But, first

we install Arduino IO library to Simulink� Libraries. The

reconstruction of signals (x, u or y) is provided by the sending

of the desired data on the PWM outputs. These PWM outputs

are, then, connected to low pass filters (with R = 3.9KΩ
and C = 33μF ). This implementation mode is used as a

real time emulator of robot. The robot model is developed in

Simulink using the Embedded MATLAB Function and then is

transferred to the Arduino device as DSP target. First, a noise

was added to the output of the system. The added signal is a

sinusoidal signal with a frequency equal to 140Hz and also

for an amplitude (±10% of y). Fig. 1 presents the real x1 and

its estimated x̂1.

As shown in Fig. 1, the state is very well estimated.

In the second phase of implementation, two noises are

added. The first is applied to the output of the system.

The second is introduced on the system. The added signals

are sinusoidal signals with frequencies equal to 240Hz and

variables amplitudes (±30% of y and f ). Fig. 2 presents the

real x3 and its estimated x̂3.

Fig. 2 shows clearly the contribution added by the method

proposed in this paper (during transitional regime and at the

moment where the frequency and amplitude of noises varies).

Now, the same noise signals (with ±45% of y and f ) are used

but with varying frequencies (between 550Hz and 3800Hz).

0 1 2 3 4 5 6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)
R

e
s
p

o
n

s
e
 o

f 
x

1
(t

)

Fig. 1 Response of x1(t) (solid line) and its estimated x̂1(t) (dashed line)

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

R
e
s
p

o
n

s
e
 o

f 
x

4
(t

)

Fig. 2 Response of x3(t) (solid line) and its estimated x̂3(t) (dashed line)

Fig. 3 presents the real x2 and its estimated (x̂2).

Fig. 3 shows that the presented approach converges despite

the different frequencies and amplitudes of the noise (this can

simulate extreme industrial conditions). Now, regarding the

point of nonlinear systems with a large value of the Lipschitz

constant and in order to prove the contribution acquired in the

convergence, let us consider the same system with a linear

output: y = Ccx =

[
x1

x2

]
. Then, increasing the Lipschitz

constant leads to the comparative Table I (where C there is a

solution ensuring convergence and in D there is no solution):

From Table I, it is clear that the presented method

ensures convergence with all high values of Lipschitz constant

compared to the recent method of [13].
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Fig. 3 Response of x2(t) (solid line) and its estimate x̂2(t) (dashed line)

TABLE I
RESULT OF CONVERGENCE WITH VARIABLES LIPSCHITZ CONSTANTS

γf 33.3 333 3330 33300 333300
Proposed Approach C C C C C

Method of [13] C C C D D

V. CONCLUSION

Efficient feedback stabilization for a class of large-scale

lipschitz nonlinear systems is presented. The use of the DMVT

has ensured that the stability analysis is performed with non

restrictive sufficient conditions on nonlinear functions. Real

time implementation with Arduino Duemilanove board in

”Target Mode” has confirmed the high quality of estimation

and control offered by the proposed method with the presence

of noises where the amplitudes and frequencies are variable.

The remaining open question is to reduce the conservatism

of the presented solution by avoiding the constraint on the

Jacobian matrix. This issue will be investigated in the near

future.
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