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Abstract—In this paper; we are interested in dynamic 
modelling of quadrotor while taking into account the high-order 
nonholonomic constraints as well as the various physical 
phenomena, which can influence the dynamics of a flying 
structure. These permit us to introduce a new state-space 
representation and new control scheme. We present after the 
development and the synthesis of a stabilizing control laws design 
based on sliding mode in order to perform best tracking results. It 
ensures locally asymptotic stability and desired tracking 
trajectories. Nonlinear observer is then synthesized in order to 
estimate the unmeasured states and the effects of the external 
disturbances such as wind and noise.  Finally simulation results are 
also provided in order to illustrate the performances of the 
proposed controllers. 

 
Keywords—Dynamic modelling, nonholonomic constraints, 

Sliding mode, Nonlinear observer. 
 

I.  INTRODUCTION 
NMANNED aerial vehicles (UAV) have shown a 
growing interest thanks to recent technological 

projections, especially those related to instrumentation. 
They made possible the design of powerful systems (mini 
drones) endowed with real capacities of autonomous 
navigation at reasonable cost.   

Despite the real progress made, researchers must still deal 
with serious difficulties, related to the control of such 
systems, particularly, in the presence of atmospheric 
turbulences. In addition, the navigation problem is complex 
and requires the perception of an often constrained and 
evolutionary environment, especially in the case of low-
altitude flights.   

Nowadays, the mini-drones invade several application 
domains [3]: safety (monitoring of the airspace, urban and  
interurban traffic); natural risk management (monitoring of 
volcano activities); environmental protection (measurement 
of air pollution and forest monitoring); intervention in 
hostile sites (radioactive workspace and mine clearance), 
management  of the large infrastructures (dams, high-
tension lines and  pipelines), agriculture and film production 
(aerial shooting).   

In contrast to terrestrial mobile robots, for which it is 
often possible to limit the model to kinematics, the control 
of aerial robots (quadrotor) requires dynamics in order to 
account for gravity effects and aerodynamic forces.  
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In this paper, authors propose a control-law based on the 
choice of a stabilizing Lyapunov function ensuring the 
desired tracking trajectories along (X, Z) axis and roll angle. 
However, they do not take into account nonholonomic 
constraints. ; do not take into account frictions due to the 
aerodynamic torques nor drag forces or nonholonomic 
constraints. They proposed firstly a control-law based on 
backstepping and secondly sliding mode controller based 
upon backstepping approach in order to stabilize the 
complete system (i.e. translation and orientation). In [1], 
authors take into account the gyroscopic effects and show 
that the classical model-independent PD controller can 
stabilize asymptotically the attitude of the quadrotor aircraft. 
Moreover, they used a new Lyapunov function, which leads 
to an exponentially stabilizing controller based upon the PD2 
and the compensation of coriolis and gyroscopic torques. 
While in [2] the authors develop a PID controller in order to 
stabilize altitude.  

Others papers; presented the sliding mode and high-order 
sliding mode respectively like an observer [6] and [7] in 
order to estimate the unmeasured states and the effects of 
the external disturbances such as wind and noise.    

In this paper, based on the vectorial model form presented 
in [2] we are interested principally in the modelling of 
quadrotor to account for various parameters which affect the 
dynamics of a flying structure such as frictions due to the 
aerodynamic torques, drag forces along (X, Y, Z) axis and 
gyroscopic effects which are identified in [2] for an 
experimental quadrotor and for high-order nonholonomic 
constraints. Consequently, all these parameters supported 
the setting of the system under more complete and more 
realistic new state-space representation, which cannot be 
found easily in the literature being interested in the control 
laws synthesis for such systems.   

Then, we present a control technique based on the 
development and the synthesis of a stabilizing control laws 
by sliding mode approach ensuring locally asymptotic 
stability and desired tracking trajectories expressed in term 
of the center of mass coordinates along (X, Y, Z) axis and 
yaw angle, while the desired roll and pitch angles are 
deduced from nonholonomic constraints unlike to . 
However, the synthesis of nonlinear observer becomes 
necessary in order to estimate unmeasured states and the 
effects of additive uncertainties. 

       Finally all the control laws synthesized are highlighted by 
simulations which gave results considered to be satisfactory. 
 

II.  MODELLING 

    A.   Quadrotor Dynamic Modelling  
    The quadrotor have four propellers in cross configuration. 
The two pairs of propellers (1,3) and (2,4) as described in 
Fig. 2, turn in opposite directions. By varying the rotor 
speed, one can change the lift force and create motion. Thus, 
increasing or decreasing the four propeller’s speeds together 
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generates vertical motion. Changing the 2 and 4 propeller’s 
speed conversely produces roll rotation coupled with lateral 
motion. Pitch rotation and the corresponding lateral motion; 
result from 1 and 3 propeller’s speed conversely modified. 
Yaw rotation is more subtle, as it results from the difference 
in the counter-torque between each pair of propellers.  

Let ( ), , ,E O X Y Z denote an inertial frame, and 

( )', , ,B o x y z  denote a frame rigidly attached to the 
quadrotor as shown in Fig. 2.    
 

 
Fig. 1 Quadrotor configuration 

 
We will make the following assumptions:   
• The quadrotor structure is rigid and symmetrical. 
• The center of mass and o’ coincides. 
• The propellers are rigid. 
• Thrust and drag are proportional to the square of 

the propellers speed.   
Under these assumptions, it is possible to describe the   

fuselage dynamics as that of a rigid body in space to which 
come to be added the aerodynamic forces caused by the 
rotation of the rotors. 

Using the formalism of Newton-Euler, the dynamic 
equations are written in the following form:   
 

( )
f t g

f a g

v
m F F F

R RS

J J

ξ

ξ

⎧ =
⎪

= + +⎪
⎨

= Ω⎪
⎪ Ω = −Ω∧ Ω+Γ −Γ −Γ⎩

             (1) 

  ξ is the position of the quadrotor center of mass with 
respect to the inertial frame. m  is the total mass of the 
structure and 3 3J R ×∈  is a symmetric positive definite 
constant inertia matrix of the quadrotor with respect to B .  
 

                      

0 0
0 0
0 0

x

y

z

I
J I

I

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                                 (2) 

 
 Ω is the angular velocity of the airframe expressed in B : 
 

   

1 0 sin
0 cos cos sin
0 sin cos cos

θ φ
φ θ φ θ
φ φ θ ψ

⎡ ⎤−⎛ ⎞
⎢ ⎥⎜ ⎟Ω = ⎢ ⎥⎜ ⎟

⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦

                (3) 

In the case when the quadrotor performs many angular 
motions of low amplitude Ω  can be assimilated 

to[ ]Tψθφ   . 
R is the homogenous matrix transformation. 

 

 
C C C S S S C C S C S S

R C S S S S C C S S C C S
S S C C C

θ ψ ψ θ φ ψ φ ψ θ φ ψ φ
θ ψ ψ θ φ ψ φ ψ θ φ ψ φ
θ φ θ φ θ

− +⎛ ⎞
⎜ ⎟= + −⎜ ⎟
⎜ ⎟−⎝ ⎠

      (4) 

 
Where C and S indicate the trigonometrically functions 

cos and sin respectively. ( )S Ω is a skew-symmetric matrix; 

for a given vector [ ]T1 2 3  Ω = Ω Ω Ω it is defined as 
follows: 

( )
3 2

3 1

2 1

0
0

0
S

−Ω Ω⎛ ⎞
⎜ ⎟Ω = Ω −Ω⎜ ⎟
⎜ ⎟−Ω Ω⎝ ⎠

 

  fF   is the resultant of the forces generated by the four 
rotors 
 

4

1

cos cos sin sin sin
cos sin sin sin cos

cos cos
f i

i

F F
φ ψ θ φ ψ
φ θ ψ φ ψ

φ θ =

+⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  (5) 

           2
i p iF K ω=                             (6)                   

where pK is the lift coefficient and iω is the angular rotor 
speed. 

tF  is the resultant of the drag forces along ( , ,X Y Z ) 
axis 

         

0 0
0 0
0 0

ftx

t fty

ftz

K
F K

K
ξ

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

                 (7) 

such as ,ftx ftyK K and ftzK  are the translation drag 
coefficients.  
 gF is the gravity force. 

[ ]T0 0 -gF mg=                          (8)                

fΓ is the moment developed by the quadrotor according 
to the body fixed frame. It is expressed as follows: 

           
( )
( )

( )

3 1

4 2

2 2 2 2
1 2 3 4

f

d

d F F
d F F

K ω ω ω ω

⎡ ⎤−
⎢ ⎥

Γ = −⎢ ⎥
⎢ ⎥

− + −⎢ ⎥⎣ ⎦

                 (9) 

d is the distance between the quadrotor center of mass and 
the rotation axis of propeller and dK is the drag coefficient. 

  aΓ is the resultant of aerodynamics frictions torques. 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:1, No:7, 2007 

330International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
7,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
74

8.
pd

f



              
2

0 0
0 0
0 0

fax

a fay

faz

K
K

K

⎡ ⎤
⎢ ⎥Γ = Ω⎢ ⎥
⎢ ⎥⎣ ⎦

              (10) 

,fax fayK K and fazK are the frictions aerodynamics 
coefficients. 

gΓ   is the resultant of torques due to the gyroscopic 
effects. 

    

( )

4

1 1

0
0

1
g r

i i
i

J

ω
= +

⎡ ⎤
⎢ ⎥

Γ = Ω∧ ⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

∑                   (11) 

Such as rJ  is the rotor inertia. 
Consequently the complete dynamic model which 

governs the quadrotor is as follows:   

( ){ }

( ){ }

( ){ }

( ){ }

( ){ }

( ){ }

2
2

2
3

2
4

1

1

1

1

1

1

1

1

1

y z fax r
x

z x fay r
y

x y faz d
z

ftx

fty

ftz

I I K J dU
I

I I K J dU
I

I I K K U
I

x C S C S S U K x
m

y C S S S C U K y
m

z C C U K z g
m

φ θψ φ θ

θ φψ θ φ

ψ θφ ψ

φ θ ψ φ ψ

φ θ ψ φ ψ

φ θ

⎧ = − − − Ω +⎪
⎪
⎪

= − − + Ω +⎪
⎪
⎪

= − − +⎪⎪
⎨
⎪
= + −⎪

⎪
⎪ = − −⎪
⎪
⎪ = − −
⎪⎩

              (12) 

 
With 1 2 3, ,U U U and 4U  are the control inputs of the 
system which are written according to the angular velocities 
of the four rotors as follows: 
 

2
1 1

2
2 2

2
3 3

2
4 4

0 0
0 0

p p p p

p p

p p

d d d d

K K K KU
K KU

K KU
K K K KU

ω
ω
ω
ω

⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥⎜ ⎟⎢ ⎥ − ⎢ ⎥⎜ ⎟⎢ ⎥ =
⎢ ⎥⎜ ⎟⎢ ⎥ −
⎢ ⎥⎜ ⎟⎢ ⎥ − − ⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎣ ⎦

           (13) 

 
and      
                  ( )1 2 3 4ω ω ω ωΩ = − + −  
 
    B.  Nonholonomic Constraints 

Taking into account nonholonomic constraints for our 
system is of major importance as are in compliance with 
physical laws and define the coupling between various states 
of the system.   

From the equations of the translation dynamics (12) we 
can extract the expressions of the high-order nonholonomic 
constraints:   

 

2 2 2

cos sin
tan

sin cos
sin

ftx fty

ftz

ftx fty

ftx fty ftz

K K
x x y y

m m
K

z g z
m

K K
x x y y

m m

K K K
x x y y z g z

m m m

ψ ψ
θ

ψ ψ
φ

⎧ ⎛ ⎞ ⎛ ⎞
− + −⎪ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ =
⎪

+ −⎪
⎪
⎨ ⎛ ⎞ ⎛ ⎞
⎪ − − + −⎜ ⎟ ⎜ ⎟
⎪ ⎝ ⎠ ⎝ ⎠=⎪

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ − + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

      (14) 

 
C.   Rotor Dynamic 
The rotor is a unit constituted by D.C-motor actuating a 

propeller via a reducer. The D.C-motor is governed by the 
following model [9]:   
 

2
0 1 2i i i ibVω β β ω β ω= − − −              (15) 

[ ]1, 4i∈  
with: 

0 1 2, ,  and s e m mr

r r r r

C k k kk b
J rJ J rJ

β β β= = = =  

and:   
 V  : motor input. 
 ,e mk k  : electrical and mechanical torque constant 
respectively. 
 rk :  load constant torque. 
 r  : motor internal resistance. 
 rJ  : rotor inertia. 

 sC : solid friction. 

 
III.  CONTROL OF THE QUADROTOR 

The choice of this method is not fortuitous considering 
the major advantages it presents: 

− It ensures Lyapunov stability. 
− It ensures the robustness and all properties of 

the desired dynamics. 
− It ensures the handling of all system 

nonlinearities. 
The model (12) developed in the first part of this paper can 
be rewritten in the state-space form: 

( ) ( ),X f X g X U δ= + +  and [ ]T
1 12...X x x= is the state vector 

of the system such as: 
T

, , , , , , , , , , ,X x x y y z zφ φ θ θ ψ ψ⎡ ⎤= ⎣ ⎦              (16)                   

From (12) and (16) we obtain the following state 
representation: 
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1 2

2
2 1 4 6 2 2 3 4 1 2

3 4

2
4 4 2 6 5 4 6 2 2 3

5 6
2

6 7 2 4 8 6 3 4

7 8

1
8 9 8

9 10

1
10 10 10

11 12

1 3
12 11 12 1

x

y

x x

x a x x a x a x b U
x x

x a x x a x a x b U
x x

x a x x a x b U
x x

Ux a x U
m

x x
Ux a x U
m

x x
C x C xx a x U g

m

=⎧
⎪

= + + Ω +⎪
⎪ =
⎪
⎪ = + + Ω +
⎪

=⎪
⎪ = + +⎪
⎪ =
⎨
⎪ = +
⎪
⎪ =⎪
⎪

= +⎪
⎪

=⎪
⎪
⎪ = + −
⎩

 

 
 
 
 
 
 
 
 

  
(17) 

 

1 2 3

4 5 6

7 8 9 10 11

1 2 3

, ,

, ,

, , , ,

1, ,

y z fax r

x x x

fayz x r

y y y

x y faz ftx fty ftz

z z

x y z

I I K Ja a a
I I I

KI I Ja a a
I I I

I I K K K K
a a a a a

I I m m m
d db b b
I I I

⎧ − −⎛ ⎞ −
= = =⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ ⎛ ⎞ −−⎪ = = =⎜ ⎟⎜ ⎟⎪⎪ ⎝ ⎠⎨
− − − − −⎪ ⎛ ⎞

= = = = =⎜ ⎟⎪
⎝ ⎠⎪

⎪
= = =⎪

⎪⎩

        (18) 

 
1 3 5 1 5

1 3 5 1 5

x

y

U C x S x C x S x S x
U C x S x S x S x C x

= +⎧⎪
⎨ = −⎪⎩

                    (19) 

    
The state representation of the system under this form has 

never been developed before. 
From high-order nonholonomic constraints developed in 

(14), roll (φ ) and pitch (θ ) angles depend not only on the 
yaw angle (ψ ) but also on the movements along ( , ,X Y Z ) 
axis and their dynamics. However the adopted control 
strategy is summarized in the control of two subsystems; the 
first relates to the position control while the second is that of 
the attitude control as shown it below the synoptic scheme:   

 
Fig. 2 Synoptic scheme of the proposed controller 

 
In this section, the purpose is to design a sliding mode 

controller. The basic sliding mode controller design 
procedure in our case is performed in two steps. Firstly, the 
choice of sliding surface (S) according to the tracking error, 
while the second step, consist into the design of a Lyapunov 
function which can satisfy the necessary sliding condition 
( 0SS < ). 

  The synthesized stabilizing control laws are as follows: 

( ){ }

( ){ }

( ){ }

( ){ }

( ){ }

2
2 1 1 4 6 2 2 3 4 1 2

1

2
3 2 4 2 6 5 4 6 2 2 4

2

2
4 3 7 2 4 8 6 3 6

3

4 9 8 4 8 1
1

5 10 10 5 10
1

1

1

1

   / 0

   

d

d

d

x x d

y y d

U k sign S a x x a x a x e
b

U k sign S a x x a x a x e
b

U k sign S a x x a x e
b
mU k sign S a x x e U
U
mU k sign S a x y e
U

φ

θ

ψ

φ λ

θ λ

ψ λ

λ

λ

= − − − − Ω+ +

= − − − − Ω+ +

= − − − + +

= − − + + ≠

= − − + +

( ){ }

1

1 6 11 12 6 12

/ 0

z d

U

mU k sign S a x z e g
C C

λ
φ θ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ ≠⎪
⎪
⎪ = − − + + +⎪⎩

      (20)        

 
Proof: 
Let us choose the sliding surfaces given by: 
 

                        

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+=

+=
+=

+=
+=

+=

11612

9510

748

536

324

112

eeS
eeS

eeS
eeS
eeS
eeS

z

y

x

λ

λ
λ

λ
λ

λ

ψ

θ

φ

                             (21) 

Such as: 

0>iλ  and [ ]
1

  

   1,11i id i

i i

e x x
i

e e+

= −⎧
∈⎨ =⎩

                (22) 

We assume that: 

            21
( ) =

2
V S Sφ φ                                      (23) 

  If ( ) < 0V Sφ , so < 0S Sφ φ  then, the necessary sliding 
condition is verified and Lyapunov stability is guaranteed. 
  The chosen law for the attractive surface is the time 
derivative of (21) satisfying ( )0S Sφ φ < : 

 
( )

( )

1

1 2 1 1

2
1 4 6 2 2 3 4 1 2 1 2

   

   
d

d d

S k sign S

x x e

a x x a x a x bU x

φ φ

λ

φ λ φ

= −

= − +

= − − − Ω − + + −

      (24) 

( ){ }2
2 1 1 4 6 2 2 3 4 1 2

1

1
dU k sign S a x x a x a x e

b φ φ λ= − − − − Ω + +  

The same steps are followed to 
extract 3 4 1,  ,  ,   and x yU U U U U . 

 
IV.  OBSERVER DESIGN 

Consider the model system (17) and denote X̂ the 
estimate of the state vector (16). The observer model is a 
copy of the original system, which has corrector gains 
functions of estimation errors; so: 
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( )
( )

( )
( )

( )
( )

( )

( )

( )

1 2 1 1

2
2 1 4 6 2 2 3 4 1 2 2 2

3 4 3 3

2
4 4 2 6 5 4 6 2 2 3 4 4

5 6 5 5

2
6 7 2 4 8 6 3 4 6 6

7 8 7 7

1
8 9 8 8 8

9 10 9 9

10

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆˆ :

ˆ ˆ

ˆ ˆ

ˆ

x

x x z

x a x x a x a x bU z

x x z

x a x x a x a x b U z

x x z

x a x x a x b U z

x x z
Ux a x U z
m

x x z

x

= + Λ

= + + Ω+ +Λ

= +Λ

= + + Ω+ +Λ

= +Λ

= + + + Λ

= +ΛΣ

= + + Λ

= +Λ

= ( )

( )

( )

1
10 10 10 10

11 12 11 11

1 3
12 11 12 1 12 12

ˆ ˆ

ˆ ˆ

cos cosˆ ˆ

y
Ua x U z
m

x x z
x xx a x U g z
m

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ + + Λ⎪
⎪

= + Λ⎪
⎪
⎪ = + − + Λ
⎪⎩

            (25) 

 
  The estimation error dynamics are given by: 
    

   

24 6 42

22 6 24

22 4 6

1 2 1

2 1 2 3 2

3 4 3

4 4 5 6 4

5 6 5

6 7 8 6

7 8 7

8 9 8 8

9 10 9

10 10 10 10

11 12 11

12 11 12 12

x x xx

x x xx

x x x

z z

z a a a

z z

z a a a

z z
z a a

z z
z a z
z z
z a z
z z
z a z

= −Λ⎧
⎪

= Δ + Δ + Δ Ω−Λ⎪
⎪ = −Λ⎪
⎪ = Δ + Δ + Δ Ω−Λ⎪
⎪ = −Λ
⎪
⎪ = Δ + Δ −Λ⎨
⎪ = −Λ
⎪

= −Λ⎪
⎪ = −Λ⎪
⎪ = −Λ
⎪

= −Λ⎪
⎪ = −Λ⎩

                 (26) 

 

with:
2

2 2

ˆ ˆ

ˆ

ˆ

i j

i

i

x x i j i j

i ix

x i i

x x x x

x x

x x

⎧Δ = −
⎪⎪Δ = −⎨
⎪
Δ = −⎪⎩

                         (27) 

 

and: 
ˆ         if i impair
ˆ         if i pair

i i i

i i i

z y y
z x x
= −⎧

⎨ = −⎩
                     (28) 

 
The considered outputs of our system are: 

 
[ ]1 3 5 7 9 11, , , , , TY x x x x x x=                       (29) 

 
In order to calculate the corrector gains, it is necessary 

that the estmation errors dynamics be stable so, let us choose 
the Lyapunov function given by: 

 

( ) ( )2 2
1 2 1 2

1,
2

V z z z z= +  

So :
( )

( ) ( )24 6 42

1 2 1 1 2 2

1 2 1 2 1 2 3 2

,

              x x xx

V z z z z z z

z z z a a a

= +

= −Λ + Δ + Δ + Δ Ω−Λ

 
  The necessary condition to get a Lyapunov stabilty is 
( )1 2, 0V z z ≤ , for this : 

 
( )
( ) ( )

24 6 42

1 1 2 1 1 2
1 2

2 2 1 2 3 2 2

    with: ,
x x xx

z z k z
k k

z a a a k z
+

Λ = +⎧⎪ ∈ℜ⎨
Λ = Δ + Δ + Δ Ω+⎪⎩

  (30) 

 
 The same steps are followed to extract others corrector 
gains: 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

2
2 6 24

22 4 6

3 3 4 3 3

4 4 4 5 6 4 4

5 5 6 5 5

6 6 7 8 6 6

7 7 8 7 7

8 8 9 8 8 8

9 9 10 9 9

10 10 10 10 10 10

11 11 12 11 11

12 12 11 12 12 12

x x xx

x x x

z z k z

z a a a k z

z z k z

z a a k z

z z k z

z a z k z

z z k z

z a z k z

z z k z

z a z k z

⎧Λ = +
⎪
Λ = Δ + Δ + Δ Ω+⎪
⎪
Λ = +⎪
⎪Λ = Δ + Δ +⎪
⎪⎪Λ = +
⎨
Λ = +⎪
⎪
Λ = +⎪
⎪Λ = +⎪
⎪Λ = +
⎪
Λ = +⎪⎩

        (31) 

 
V. SIMULATION RESULTS 

   
  The simulation results are obtained based on the following 
real parameters [8]: 
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 Fig. 3 Tracking simulation results of desired trajectories along 

yaw angle (ψ ) and ( ), ,X Y Z axis 
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Fig. 4 Tracking errors according yaw (ψ ) angle and ( ), ,X Y Z  

respectively 
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Fig. 5 Estimation errors according yaw (ψ ) angle 

and ( ), ,X Y Z  respectively 

 
V.  CONCLUSION 

In this paper, we presented stabilizing control laws 
synthesis by sliding mode. Firstly, we start by the 
development of the dynamic model of the quadrotor taking 
into account the different physics phenomena and the high-
order nonholonomic constraints imposed to the system 
motions; this says these control laws allowed the tracking of 
the various desired trajectories expressed in term of the 
center of mass coordinates of the system in spite of the 
complexity of the proposed model. After we are interested 
to the developement of a nonlinear observer in order to be 
able to estimate unmeasured states and the effects of 
external additive disturbances like wind and noise.As 
prospects we hope to develop other control techniques and 
other kinds of nonlinear observer in order to improve the 
performances and to ensure good navigation of such systems 
in evolutionary and constrained environement. 
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