Search results for: Behavior model simulation
10312 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.
Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530910311 Differences in the Perception of Behavior Problems in Pre-school Children among the Teachers and Parents
Authors: Jana Kožárová
Abstract:
Even the behavior problems in pre-school children might be considered as a transitional problem which may disappear by their transition into elementary school; it is an issue that needs a lot of attention because of the fact that the behavioral patterns are adopted in the children especially in this age. Common issue in the process of elimination of the behavior problems in the group of pre-school children is a difference in the perception of the importance and gravity of the symptoms. The underestimation of the children's problems by parents often result into conflicts with kindergarten teachers. Thus, the child does not get the support that his/her problems require and this might result into a school failure and can negatively influence his/her future school performance and success. The research sample consisted of 4 children with behavior problems, their teachers and parents. To determine the most problematic area in the child's behavior, Child Behavior Checklist (CBCL) filled by parents and Caregiver/Teacher Form (CTF-R) filled by teachers were used. Scores from the CBCL and the CTR-F were compared with Pearson correlation coefficient in order to find the differences in the perception of behavior problems in pre-school children.
Keywords: Behavior problems, child behavior checklist, caregiver/teacher form, Pearson correlation coefficient, pre-school age.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165910310 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid
Authors: D. Šedivý, S. Fialová
Abstract:
The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162110309 The Use of Computer Simulation as Technological Education for Crisis Management Staff
Authors: Jiří Barta, Josef Krahulec, Jiří F. Urbánek
Abstract:
Education and practical training crisis management members are a topical issue nowadays. The paper deals with the perspectives and possibilities of "smart solutions" to education for crisis management staff. Currently, there is a large number of simulation tools, which notes that they are suitable for practical training of crisis management staff. The first part of the paper is focused on the introduction of the technology simulation tools. The simulators aim is to create a realistic environment for the practical training of extending units of crisis staff. The second part of the paper concerns the possibilities of using the simulation technology to the education process. The aim of this section is to introduce the practical capabilities and potential of the simulation programs for practical training of crisis management staff.Keywords: Crisis management staff, computer simulation, software, technological education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156610308 Evaluation of Behavior Factor for Steel Moment-Resisting Frames
Authors: Taïeb Branci, Djamal Yahmi, Abdelhamid Bouchair, Eric Fourneley
Abstract:
According to current seismic codes the structures are calculated using the capacity design procedure based on the concept of shear at the base depending on several parameters including behavior factor which is considered to be the most important parameter. The behavior factor allows designing the structure when it is at its ultimate limit state taking into account its energy dissipation through its plastic deformation. The aim of the present study is to assess the basic parameters on which is composed the behavior factor among them the reduction factor due to ductility, and those due to redundancy and the overstrength for steel moment-resisting frames of different heights and regular configuration. Analyses are conducted on these frames using the nonlinear static method where the effect of some parameters on the behavior factor, such as the number of stories and the number of spans, are taken into account. The results show that the behavior factor is rather sensitive to the variation of the number of stories and bays.
Keywords: Behavior, code, frame, ductility, overstrength, redundancy, plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 333410307 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183510306 UML Model for Double-Loop Control Self-Adaptive Braking System
Authors: Heung Sun Yoon, Jong Tae Kim
Abstract:
In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption. We can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.
Keywords: Activity diagram, automotive, braking system, double-loop, Self-adaptive, UML, vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250510305 A Cognitive Architectural Approach to the Institutional Roles of Agent Societies
Authors: Antônio Carlos da Rocha Costa
Abstract:
This paper concerns a formal model to help the simulation of agent societies where institutional roles and institutional links can be specified operationally. That is, this paper concerns institutional roles that can be specified in terms of a minimal behavioral capability that an agent should have in order to enact that role and, thus, to perform the set of institutional functions that role is responsible for. Correspondingly, the paper concerns institutional links that can be specified in terms of a minimal interactional capability that two agents should have in order to, while enacting the two institutional roles that are linked by that institutional link, perform for each other the institutional functions supported by that institutional link. The paper proposes a cognitive architecture approach to institutional roles and institutional links, that is, an approach in which a institutional role is seen as an abstract cognitive architecture that should be implemented by any concrete agent (or set of concrete agents) that enacts the institutional role, and in which institutional links are seen as interactions between the two abstract cognitive agents that model the two linked institutional roles. We introduce a cognitive architecture for such purpose, called the Institutional BCC (IBCC) model, which lifts Yoav Shoham-s BCC (Beliefs-Capabilities-Commitments) agent architecture to social contexts. We show how the resulting model can be taken as a means for a cognitive architecture account of institutional roles and institutional links of agent societies. Finally, we present an example of a generic scheme for certain fragments of the social organization of agent societies, where institutional roles and institutional links are given in terms of the model.Keywords: Simulation of agent societies, institutional roles, cognitive architecture of institutional roles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141810304 Simulation of Online Communities Using MAS Social and Spatial Organisations
Authors: Maya Rupert, Salima Hassas, Carlos Li, John Sherwood
Abstract:
Online Communities are an example of sociallyaware, self-organising, complex adaptive computing systems. The multi-agent systems (MAS) paradigm coordinated by self-organisation mechanisms has been used as an effective way for the simulation and modeling of such systems. In this paper, we propose a model for simulating an online health community using a situated multi-agent system approach, governed by the co-evolution of the social and spatial organisations of the agents.Keywords: multi-agent systems, organizations, online communities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136510303 Genetically Optimized TCSC Controller for Transient Stability Improvement
Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel
Abstract:
This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.
Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238310302 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler
Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim
Abstract:
This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.
Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220410301 Study Forecast Indoor Acoustics. A Case Study: the Auditorium Theatre-Hotel “Casa Tra Noi“
Authors: D. Germanò, D. Plutino, G. Cannistraro
Abstract:
The theatre-auditorium under investigation following the highly reflective characteristics of materials used in it (marble, painted wood, smooth plaster, etc), architectural and structural features of the Protocol and its intended use (very multifunctional: Auditorium, theatre, cinema, musicals, conference room) from the analysis of the statement of fact made by the acoustic simulation software Ramsete and supported by data obtained through a campaign of acoustic measurements of the state of fact made on the spot by a Fonomet Svantek model SVAN 957, appears to be acoustically inadequate. After the completion of the 3D model according to the specifications necessary software used forecast in order to be recognized by him, have made three simulations, acoustic simulation of the state of and acoustic simulation of two design solutions. Improved noise characteristics found in the first design solution, compared to the state in fact consists therefore in lowering Reverberation Time that you turn most desirable value, while the Indicators of Clarity, the Baricentric Time, the Lateral Efficiency, Ratio of Low Tmedia BR and defined the Speech Intelligibility improved significantly. Improved noise characteristics found instead in the second design solution, as compared to first design solution, is finally mostly in a more uniform distribution of Leq and in lowering Reverberation Time that you turn the optimum values. Indicators of Clarity, and the Lateral Efficiency improve further but at the expense of a value slightly worse than the BR. Slightly vary the remaining indices.Keywords: Indoor, Acoustic, Acoustic simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419410300 Numerical Simulation of Thermoreversible Polymer Gel Filtration
Authors: Said F. Urmancheev, Victor N. Kireev, Svetlana F. Khizbullina
Abstract:
This paper presents results of numerical simulation of filtration of abnormal thermoviscous fluid on an example of thermo reversible polymer gel.
Keywords: Abnormal thermoviscous fluid, filtration, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146010299 Effective Scheduling of Semiconductor Manufacturing using Simulation
Authors: Ingy A. El-Khouly, Khaled S. El-Kilany, Aziz E. El-Sayed
Abstract:
The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.Keywords: Dispatching rules, lot release policy, re-entrant flowshop, semiconductor manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257110298 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Bachy, Joerg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.
Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434510297 Container Chaos: The Impact of a Casual Game on Learning and Behavior
Authors: Lori L. Scarlatos, Ryan Courtney
Abstract:
This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.
Keywords: Behavior, carbon footprint, casual games, environmental impact, material sciences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93910296 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform
Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee
Abstract:
This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.
Keywords: Boid algorithm, crowd simulation, mobile platform, Newtonian laws, virtual heritage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149810295 Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model
Authors: T. H. Lee, J. H. Park, S. M. Lee, S. C. Lee
Abstract:
In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of load current is the significant one of these for good performance of the SOFC system. In order to keep the constant stack terminal voltage by changing load current, the nonlinear model predictive control (MPC) is proposed in this paper. After primary control method is designed to guarantee the fuel utilization as a proper constant, a nonlinear model predictive control based on the Wiener model is developed to control the stack terminal voltage of the SOFC system. Simulation results verify the possibility of the proposed Wiener model and MPC method to control of SOFC system.
Keywords: SOFC, model predictive control, Wiener model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206810294 Modeling the Effects of Type and Intensity of Selective Logging on Forests of the Amazon
Authors: Theodore N.S. Karfakis, Anna Andrade, Carolina Volkmer-Castilho, Dennis R. Valle, Eric Arets, Paul van Gardingen
Abstract:
The aim of the work presented here was to either use existing forest dynamic simulation models or calibrate a new one both within the SYMFOR framework with the purpose of examining changes in stand level basal area and functional composition in response to selective logging considering trees > 10 cm d.b.h for two areas of undisturbed Amazonian non flooded tropical forest in Brazil and one in Peru. Model biological realism was evaluated for forest in the undisturbed and selectively logged state and it was concluded that forest dynamics were realistically represented. Results of the logging simulation experiments showed that in relation to undisturbed forest simulation subject to no form of harvesting intervention there was a significant amount of change over a 90 year simulation period that was positively proportional to the intensity of logging. Areas which had in the dynamic equilibrium of undisturbed forest a greater proportion of a specific ecological guild of trees known as the light hardwoods (LHW’s) seemed to respond more favorably in terms of less deviation but only within a specific range of baseline forest composition beyond which compositional diversity became more important. These finds are in line partially with practical management experience and partiality basic systematics theory respectively.
Keywords: Amazonbasin, ecological species guild, selective logging, simulation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166510293 Performance Analysis of Quantum Cascaded Lasers
Authors: M. B. El_Mashade, I. I. Mahamoud, M. S. El_Tokhy
Abstract:
Improving the performance of the QCL through block diagram as well as mathematical models is the main scope of this paper. In order to enhance the performance of the underlined device, the mathematical model parameters are used in a reliable manner in such a way that the optimum behavior was achieved. These parameters play the central role in specifying the optical characteristics of the considered laser source. Moreover, it is important to have a large amount of radiated power, where increasing the amount of radiated power represents the main hopping process that can be predicted from the behavior of quantum laser devices. It was found that there is a good agreement between the calculated values from our mathematical model and those obtained with VisSim and experimental results. These demonstrate the strength of mplementation of both mathematical and block diagram models.
Keywords: Quantum Cascaded Lasers (QCLs), Modeling, Block Diagram Programming, Intersubband transitions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143910292 Robot Task-Level Programming Language and Simulation
Authors: M. Samaka
Abstract:
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326210291 Understanding Workplace Behavior through Organizational Culture and Complex Adaptive Systems Theory
Authors: Péter Restás, Andrea Czibor, Zsolt Péter Szabó
Abstract:
Purpose: This article aims to rethink the phenomena of employee behavior as a product of a system. Both organizational culture and Complex Adaptive Systems (CAS) theory emphasize that individual behavior depends on the specific system and the unique organizational culture. These two major theories are both represented in the field of organizational studies; however, they are rarely used together for the comprehensive understanding of workplace behavior. Methodology: By reviewing the literature we use key concepts stemming from organizational culture and CAS theory in order to show the similarities between these theories and create an enriched understanding of employee behavior. Findings: a) Workplace behavior is defined here as social cognition issue. b) Organizations are discussed here as complex systems, and cultures which drive and dictate the cognitive processes of agents in the system. c) Culture gives CAS theory a context which lets us see organizations not just as ever-changing and unpredictable, but as such systems that aim to create and maintain stability by recurring behavior. Conclusion: Applying the knowledge from culture and CAS theory sheds light on our present understanding of employee behavior, also emphasizes the importance of novel ways in organizational research and management.
Keywords: Complex adaptive systems theory, employee behavior, organizational culture, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136510290 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: Deterioration, simulation, subcontracting, production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190110289 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results
Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee
Abstract:
The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.Keywords: Deep drawing, Finite element method, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507710288 VFAST TCP: A delay-based enhanced version of FAST TCP
Authors: Salem Belhaj, Moncef Tagina
Abstract:
This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.Keywords: Fast tcp, RTT, delay estimation, delay-based congestion control, high speed TCP, large bandwidth delay product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173210287 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori, Rina Suzuki
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.
Keywords: Catastrophic forgetting, dual-network, temporal sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142410286 The Effect of Nonnormality on CB-SEM and PLS-SEM Path Estimates
Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim
Abstract:
The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are nonnormal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and nonnormality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under nonnormality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.
Keywords: CB-SEM, Monte Carlo simulation, Normality conditions, Nonnormality, PLS-SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513910285 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: Logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101810284 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification
Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka
Abstract:
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.
Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318210283 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine
Authors: Mohammad Jafarifar
Abstract:
This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294