Search results for: Reynolds stress tensor anisotropy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1362

Search results for: Reynolds stress tensor anisotropy

912 Melodic and Temporal Structure of Indonesian Sentences of Sitcom "International Class" Actors: Prosodic Study with Experimental Phonetics Approach

Authors: Tri Sulistyaningtyas, Yani Suryani, Dana Waskita, Linda Handayani Sukaemi, Ferry Fauzi Hermawan

Abstract:

The enthusiasm of foreigners studying the Indonesian language by Foreign Speakers (BIPA) was documented in a sitcom "International Class". Tone and stress when they speak the Indonesian language is unique and different from Indonesian pronunciation. By using the Praat program, this research aims to describe prosodic Indonesian language which is spoken by ‘International Class” actors consisting of Abbas from Nigeria, Lee from Korea, and Kotaro from Japan. Data for the research are taken from the video sitcom "International Class" that aired on Indonesian television. The results of this study revealed that pitch movement that arises when pronouncing Indonesian sentences was up and down gradually, there is also a rise and fall sharply. In terms of stress, respondents tend to contain a lot of stress when pronouncing Indonesian sentences. Meanwhile, in terms of temporal structure, the duration pronouncing Indonesian sentences tends to be longer than that of Indonesian speakers.

Keywords: Melodic structure, temporal structure, prosody, experimental phonetics, international class.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
911 Statistical Optimization of Medium Components for Biomass Production of Chlorella pyrenoidosa under Autotrophic Conditions and Evaluation of Its Biochemical Composition under Stress Conditions

Authors: N. P. Dhull, K. Gupta, R. Soni, D. K. Rahi, S. K. Soni

Abstract:

The aim of the present work was to statistically design an autotrophic medium for maximum biomass production by Chlorella pyrenoidosa using response surface methodology. After evaluating one factor at a time approach, K2HPO4, KNO3, MgSO4.7H2O and NaHCO3 were preferred over the other components of the fog’s medium as most critical autotrophic medium components. The study showed that the maximum biomass yield was achieved while the concentrations of MgSO4.7H2O, K2HPO4, KNO3 and NaHCO3 were 0.409 g/L, 0.24 g/L, 1.033 g/L, and 3.265 g/L, respectively. The study reported that the biomass productivity of C. pyrenoidosa improved from 0.14 g/L in defined fog’s medium to 1.40 g/L in modified fog’s medium resulting 10 fold increase. The biochemical composition biosynthesis of C. pyrenoidosa was altered using nitrogen limiting stress bringing about 5.23 fold increase in lipid content than control (cell without stress), as analyzed by FTIR integration method.

Keywords: Autotrophic condition, Chlorella pyrenoidosa, FTIR, Response Surface Methodology, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
910 Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation

Authors: E. A. Azrulhisham, Y. M. Asri, A. W. Dzuraidah, A. H. Hairul Fahmi

Abstract:

The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.

Keywords: Stub axle, Fatigue life reliability, Stress-life, PSN curve, Weibull distribution, Pearson system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
909 Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete

Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı

Abstract:

In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.

Keywords: Alkali activation, slag, rheology, yield stress, plastic viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
908 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: Elastic deformation, heating, shape-memory polymers, stress-strain behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
907 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

Authors: H. A. Alguhi, W. A. Elsaigh

Abstract:

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyses involving HSFRC structures.

Keywords: Tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
906 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
905 A Discretizing Method for Reliability Computation in Complex Stress-strength Models

Authors: Alessandro Barbiero

Abstract:

This paper proposes, implements and evaluates an original discretization method for continuous random variables, in order to estimate the reliability of systems for which stress and strength are defined as complex functions, and whose reliability is not derivable through analytic techniques. This method is compared to other two discretizing approaches appeared in literature, also through a comparative study involving four engineering applications. The results show that the proposal is very efficient in terms of closeness of the estimates to the true (simulated) reliability. In the study we analyzed both a normal and a non-normal distribution for the random variables: this method is theoretically suitable for each parametric family.

Keywords: Approximation, asymmetry, experimental design, interference theory, Monte Carlo simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
904 Phyllantus niruri Protects against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Enriched Fractions of Rats Brain

Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha

Abstract:

The potential neuroprotective effect of Phyllantus nuriri against Fe2+ and sodium nitroprusside (SNP) induced oxidative stress in mitochondria of rats brain was evaluated. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluoresce indiacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10μM) and SNP (5μM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-200 μg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.540.01), caffeic acid (7.930.02), rutin (25.310.05), quercetin (31.280.03) and kaemferol (14.360.01). This result suggests that these phytochemicals account for the protective actions of P. niruri against Fe2+ and SNP -induced oxidative stress. Our results show that P. nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.

Keywords: Phyllantus niruri, mitochondria, antioxidant, oxidative stress, synaptosome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
903 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: Aneurysm, CFD, wall shear stress, gravity, fluid dynamics, bifurcation artery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
902 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
901 Parametric Characterization of Load Capacity of Infinitely Wide Parabolic Slider Bearing with Couple Stress Fluids

Authors: Oladeinde Mobolaji Humphrey, Akpobi John

Abstract:

A mathematical model for the hydrodynamic lubrication of parabolic slider bearings with couple stress lubricants is presented. A numerical solution for the mathematical model using finite element scheme is obtained using three nodes isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations were solved using Gauss Quadrature to obtain a finite number of stiffness matrices. The global system of equations was obtained for the bearing and solved using Gauss Seidel iterative scheme. The converged pressure solution was used to obtain the load capacity of the bearing. Parametric studies were carried out and it was shown that the effect of couple stresses and profile parameter are to increase the load carrying capacity of the parabolic slider bearing. Numerical experiments reveal that the magnitude of the profile parameter at which maximum load is obtained increases with decrease in couple stress parameter. The results are presented in graphical form.

Keywords: Finite element, numerical, parabolic slider.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
900 Stress versus Strain Behavior of Geopolymer Cement under Triaxial Stress Conditions in Saline and Normal Water

Authors: Haider M. Giasuddin, Jay G. Sanjayan, P. G. Ranjith

Abstract:

Geopolymer cement was evaluated as wellbore sealing material for carbon dioxide geosequestration application. Curing of cement system in saline water and strength testing in triaxial stress state condition under lateral confinement is relevant to primary cementing in CO2 geosequestration wellbore in saline aquifer. Geopolymer cement was cured in saline water (both at ambient conditions for 28 days and heated (60°C) conditions for 12 hours) and tested for triaxial strength at different levels of lateral confinement. Normal water and few other curing techniques were also studied both for geopolymer and API ‘G’ cement. Results reported were compared to evaluate the suitability of saline water for curing of geopolymer cement. Unconfined compression test results showed higher strength for curing in saline water than normal water. Besides, testing strength under lateral confinement demonstrated the material failure behavior from brittle to plastic.

Keywords: Fly ash, Geopolymer, Geosequestration, Saline water, Strength, Traiaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
899 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: Shear strength parameters, direct shear test, silty sand, shear stress, shear deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
898 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: Expectation-maximization (EM) algorithm, cause of failure, intensity, linear degradation path, masked data, reliability function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
897 Theoretical Investigation of Steel Plated Girder Resistance

Authors: J. Kala, J. Melcher, M. Škaloud, Z. Kala

Abstract:

In the paper, the results of sensitivity analysis of the influence of initial imperfections on the web stress state of a thinwalled girder are presented. The results of the study corroborate a very good and effective agreement of experiments with theory. Most input random quantities were found experimentally. The change of sensitivity coefficients in dependence on working load value is analysed. The stress was analysed by means of a geometrically and materially non-linear solution by applying the program ANSYS. This research study offers important background for theoretical studies of stability problems, post-critical effects and limit states of thin-walled steel structures.

Keywords: Buckling, Fatigue, Imperfection, Steel, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
896 Relationship between Functional Gastrointestinal Disorders and Risk Factors: A Biomechanical Analysis

Authors: Dae Gon Woo, Han Sung Kim, Dohyung Lim, Dong Jin Seo, In Deok Kong, Chang Yong Ko

Abstract:

Functional gastrointestinal disorders (FGID) affect millions of people spread all age regardless of race and sex. Emotional stress and obesity have been associated with increased reporting of gastrointestinal (GI) symptoms, but the relationship between FGID and risk factors (emotional stress or obesity) is unclear. Our aim was to assess the changes of the mechanical characteristics on the gastrointestinal tracts of the mentally fatigued obese and normal rat models. Finally, using the physical characteristics with micro-indentation test, we made a close investigation into the relation between FGID and risk factors quantitatively.

Keywords: Functional gastrointestinal disorders, Risk Factors, Mechanical Characteristics, Gastrointestinal Tract.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
895 Bias Stability of a-IGZO TFT and a new Shift-Register Design Suitable for a-IGZO TFT

Authors: Young Wook Lee, Sun-Jae Kim, Soo-Yeon Lee, Moon-Kyu Song, Woo-Geun Lee Min-Koo Han

Abstract:

We have fabricated a-IGZO TFT and investigated the stability under positive DC and AC bias stress. The threshold voltage of a-IGZO TFT shifts positively under those biases, and that reduces on-current. For this reason, conventional shift-register circuit employing TFTs which stressed by positive bias will be unstable, may do not work properly. We have designed a new 6-transistor shift-register, which has less transistors than prior circuits. The TFTs of the proposed shift-register are not suffering from positive DC or AC stress, mainly kept unbiased. Despite the compact design, the stable output signal was verified through the SPICE simulation even under RC delay of clock signal.

Keywords: Indium Gallium Zinc Oxide (IGZO), Thin FilmTransistor (TFT), shift-register

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256
894 Modeling of Plasticity of Clays Submitted to Compression Test

Authors: Otávio J.U. Flores, Fernando A. Andrade, Dachamir Hotza, Hazim A. Al-Qureshi

Abstract:

In the forming of ceramic materials the plasticity concept is commonly used. This term is related to a particular mechanical behavior when clay is mixed with water. A plastic ceramic material shows a permanent strain without rupture when a compressive load produces a shear stress that exceeds the material-s yield strength. For a plastic ceramic body it observes a measurable elastic behavior before the yield strength and when the applied load is removed. In this work, a mathematical model was developed from applied concepts of the plasticity theory by using the stress/strain diagram under compression.

Keywords: Plasticity, clay, modeling, coefficient of friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
893 Ductile Crack Growth in Surface Cracked Pressure Vessels

Authors: Osama A. Terfas, Abdusalam A. Alaktiwi

Abstract:

Pressure vessels are usually operating at temperatures where the conditions of linear elastic fracture mechanics are no longer met because massive plasticity precedes crack propagation. In this work the development of a surface crack in a pressure vessel subject to bending and tension under elastic-plastic fracture mechanics conditions was investigated. Finite element analysis was used to evaluate the hydrostatic stress, the J-integral and crack growth for semi-elliptical surface-breaking cracks. The results showed non-uniform stress triaxiality and crack driving force around the crack front at large deformation levels. Different ductile crack extensions were observed which emphasis the dependent of ductile tearing on crack geometry and type of loading. In bending the crack grew only beneath the surface, and growth was suppressed at the deepest segment. This contrasts to tension where the crack breaks through the thickness with uniform growth along the entire crack front except at the free surface. Current investigations showed that the crack growth developed under linear elastic fracture mechanics conditions will no longer be applicable under ductile tearing scenarios.

Keywords: Bending, ductile tearing, fracture toughness, stress triaxiality, tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
892 Application of an in vitro Alveolus Model in Evaluating the Alveolar Response to Pressure- Induced Injury

Authors: Divya D. Nalayanda, William B. Fulton, Tza-Huei Wang, Fizan Abdullah

Abstract:

In an effort to understand the preliminary effects of aerodynamic stress on alveolar epithelial cells, we developed a multifluidic cell culture platform capable of supporting alveolar cultures at an air-liquid interface under constant air flow and exposure to varying pressure stimuli on the apical side while providing nourishment on the basolateral plane. Our current study involved utilizing the platform to study the effect of basement membrane coating and addition of dexamethasone on cellular response to pressure in A549 and H441 alveolar epithelial cells.

Keywords: Aerodynamic stress, Air-liquid interface, Alveolar, Dexamethasone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
891 Numerical Investigation on Performance of Expanded Polystyrene Geofoam Block in Protecting Buried Lifeline Structures

Authors: M. Abdollahi, S. N. Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is often used in below ground applications in geotechnical engineering. A most recent configuration system implemented in roadways to protect lifelines such as buried pipes, electrical cables and culvert systems could be consisted of two EPS geofoam blocks, “posts” placed on each side of the structure, an EPS block capping, “beam” put atop two posts, and soil cover on the beam. In this configuration, a rectangular void space will be built atop the lifeline. EPS blocks will stand all the imposed vertical forces due to their strength and deformability, thus the lifeline will experience no vertical stress. The present paper describes the results of a numerical study on the post and beam configuration subjected to the static loading. Three-dimensional finite element analysis using ABAQUS software is carried out to investigate the effect of different parameters such as beam thickness, soil thickness over the beam, post height to width ratio, EPS density, and free span between two posts, on the stress distribution and the deflection of the beam. The results show favorable performance of EPS geofoam for protecting sensitive infrastructures.

Keywords: Beam, EPS block, numerical analysis, post, stress distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
890 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests

Authors: V. Fuis, P. Janicek, T. Navrat

Abstract:

The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of σ1max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bioceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.

Keywords: Ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
889 A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park

Abstract:

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
888 The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Keywords: Hydrogen embrittlement, Fracture mechanics, Thermodynamic, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
887 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: Large strain, compression-tension, loading-unloading, Mg alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
886 Modeling and Analysis of the Effects of Nephrolithiasis in Kidney Using a Computational Tactile Sensing Approach

Authors: Elnaz Afshari, Siamak Najarian

Abstract:

Having considered tactile sensing and palpation of a surgeon in order to detect kidney stone during open surgery; we present the 2D model of nephrolithiasis (two dimensional model of kidney containing a simulated stone). The effects of stone existence that appear on the surface of kidney (because of exerting mechanical load) are determined. Using Finite element method, it is illustrated that the created stress patterns on the surface of kidney and stress graphs not only show existence of stone inside kidney, but also show its exact location.

Keywords: Nephrolithiasis, Minimally Invasive Surgery, Artificial Tactile Sensing, Finite Element Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
885 Design of Saddle Support for Horizontal Pressure Vessel

Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma

Abstract:

This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.

Keywords: ANSYS, Pressure Vessel, Saddle, Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26141
884 Effects of Temperature-Dependent Material Properties on Stress and Temperature in Cracked Metal Plate under Electric Current Load

Authors: Thomas Jin-Chee Liu

Abstract:

Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.

Keywords: Joule heating, temperature-dependent, crack tip, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
883 Design of Polyetheretherketone Fixation Plates for Fractured Distal Femur

Authors: Abhishek Soni, Bhagat Singh

Abstract:

In the present study, a methodology has been proposed to treat fracture in the distal part of the femur bone. Initially, bone model has been developed using the computed tomography scan data of the fractured bone. This information has been further used to create polyether ether ketone (PEEK) implant for this fractured bone. Damaged bone and implant models have been assembled. This assembled model has been further analyzed for stress distribution. Moreover, deformation developed was also measured. It has been observed that the stress and deformation developed was not so appreciable. Thus, it proves that the aforementioned procedure can be suitably adopted for the treatment of fractured distal femur bone.

Keywords: Distal femur, fixation plates, PEEK, reverse engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459