A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park

Abstract:

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329284

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277

References:


[1] G. S. Guthart and J. Salisbury, J.K., "The IntuitiveTM telesurgery system: overview and application", in Robotics and Automation, 2000. Proceedings. ICRA -00. IEEE International Conference on, 2000, vol. 1, pp. 618 -621 vol.1.
[2] A. J. Einstein, K. W. Moser, R. C. Thompson, M. D. Cerqueira, and M. J. Henzlova, "Radiation dose to patients from cardiac diagnostic imaging", Circulation, vol. 116, no. 11, pp. 1290-1305, Nov 2007.
[3] R. Razavi, D. L. Hill, S. F. Keevil, M. E. Miquel, V. Muthurangu, S. Hegde, K. Rhode, M. Barnett, J. van Vaals, D. J. Hawkes, and E. Baker, "Cardiac catheterisation guided by MRI in children and adults with congenital heart disease", The Lancet, vol. 362, no. 9399, pp. 1877-1882, 2003.
[4] Yating Hu, R. B. Katragadda, Hongen Tu, Qinglong Zheng, Yuefa Li, and Yong Xu, "Bioinspired 3-D tactile sensor for minimally invasive surgery", Microelectromechanical Systems, Journal of, vol. 19, no. 6, pp. 1400-1408, 2010.
[5] J. Dargahi, M. Parameswaran, and S. Payandeh, "A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments", Journal of Microelectromechanical Systems, vol. 9, no. 3, pp. 329-335, Sep 2000.
[6] J. Peirs, J. Clijnen, D. Reynaerts, H. V. Brussel, P. Herijgers, B. Corteville, and S. Boone, "A micro optical force sensor for force feedback during minimally invasive robotic surgery", Sensors and Actuators A: Physical, vol. 115, no. 2-3, pp. 447-455, Sep 2004.
[7] P. Valdastri, K. Harada, A. Menciassi, L. Beccai, C. Stefanini, M. Fujie, and P. Dario, "Integration of a miniaturized triaxial force sensor in a minimally invasive surgical tool", Biomedical Engineering, IEEE Transactions on, vol. 53, no. 11, pp. 2397 -2400, Nov 2006.
[8] P. Puangmali, H. Liu, L. D. Seneviratne, P. Dasgupta, and K. Althoefer, "Miniature 3-axis distal force sensor for minimally invasive surgical palpation", IEEE/ASME Transactions on Mechatronics, vol. PP, no. 99, pp. 1-11, 0.
[9] P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, and P. Dasgupta, "State-of-the-art in force and tactile sensing for minimally invasive surgery", Sensors Journal, IEEE, vol. 8, no. 4, pp. 371-381, 2008.
[10] A. L. Trejos, R. V. Patel, and M. D. Naish, "Force sensing and its application in minimally invasive surgery and therapy: a survey", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 224, no. 7, pp. 1435-1454, Jan 2010.
[11] S. Sokhanvar, M. Packirisamy, and J. Dargahi, "MEMS endoscopic tactile sensor: toward in-situ and in-vivo tissue softness characterization", Sensors Journal, IEEE, vol. 9, no. 12, pp. 1679-1687, 2009.
[12] P. Peng, A. S. Sezen, R. Rajamani, and A. G. Erdman, "Novel MEMS stiffness sensor for in-vivo tissue characterization measurement", in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 6640-6643.
[13] M. A. Qasaimeh, S. Sokhanvar, J. Dargahi, and M. Kahrizi, "PVDF-based microfabricated tactile sensor for minimally invasive surgery", Microelectromechanical Systems, Journal of, vol. 18, no. 1, pp. 195-207, 2009.
[14] H.-L. Chau and K. D. Wise, "An ultraminiature solid-state pressure sensor for a cardiovascular catheter", Electron Devices, IEEE Transactions on, vol. 35, no. 12, pp. 2355 -2362, 1988.
[15] M. Esashi, H. Komatsu, T. Matsuo, M. Takahashi, T. Takishima, K. Imabayashi, and H. Ozawa, "Fabrication of catheter-tip and sidewall miniature pressure sensors", Electron Devices, IEEE Transactions on, vol. 29, no. 1, pp. 57 - 63, 1982.
[16] P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, "MRI-compatible fiber-optic force sensors for catheterization procedures", Sensors Journal, IEEE, vol. 10, no. 10, pp. 1598 -1608, Oct 2010.
[17] C. Li, P.-M. Wu, J. Han, and C. Ahn, "A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter", Biomedical Microdevices, vol. 10, no. 5, pp. 671-679, 2008.
[18] T. Meiß, T. A. Kern, S. Sindlinger, and R. Werthsch├╝tzky, "HapCath: highly miniaturized piezoresistive force sensors for interior palpation of vessels during angioplasty", in World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, vol. 25/6, O. Dössel and W. C. Schlegel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 228-231.
[19] O. Hammarstrm, P. Benkowski, P. von Malmborg, and L. Tenerz, "Sensor and guide wire assembly", U.S. Patent 633690608-Jan-2002.
[20] L. Tenerz and L. Smith, "Sensor and guide wire assembly", U.S. Patent 734381118-Mar-2008.
[21] I.-I. O. for Standardization, "ISO - International Organization for Standardization". (Online). Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm? csnumber=19052. (Accessed: 24-Jun-2012).
[22] P. Neuzil, C. C. Wong, and J. Reboud, "Electrically controlled giant piezoresistance in silicon nanowires", Nano Lett., vol. 10, no. 4, pp. 1248-1252, 2010.
[23] L. Lou, K. Ramakrishna, L. Shao, W.-T. Park, D. Yu, L. Lim, Y. Wee, V. Kripesh, H. Feng, B. S. Y. Chua, C. Lee, and D.-L. Kwong, "Sensorized guidewires with MEMS tri-axial force sensor for minimally invasive surgical applications", in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 6461 -6464.
[24] S. D. Senturia, Microsystem Design. Springer, 2001.