
 

 

 
Abstract—Aerobatic and military pilots are subjected to high 

gravitational forces that could cause blackout, physical injuries or 
death. A CFD simulation using fluid-solid interactions scheme has 
been conducted to investigate the gravitational effects and hazards 
inside cerebral aneurysms. Medical data have been used to derive the 
size and geometry of a simple aneurysm on a T-shaped bifurcation. 
The results show that gravitational force has no effect on maximum 
Wall Shear Stress (WSS); hence, it will not cause aneurysm 
initiation/formation. However, gravitational force cause causes 
hypertension which could contribute to aneurysm rupture. 
 

Keywords—Aneurysm, CFD, wall shear stress, gravity, fluid 
dynamics, bifurcation artery.  

I. INTRODUCTION 

N intracranial aneurysm is a vascular disorder 
characterized by abnormal focal dilation of a brain artery 

which is considered as a serious and potentially life-
threatening condition. The weariness of the inner muscular 
layer of a blood vessel wall can cause the abnormal focal 
dilation of the artery which can compress surrounding nerves 
and brain tissue resulting in many serious medical conditions. 
Recently more cases of patients with unruptured intracranial 
aneurysms are diagnosed due to continuous development of 
accurate noninvasive cerebrovascular imaging techniques. It 
has been reported in a clinical study [1] that the occurrence of 
unruptured intracranial aneurysms is around 6.5% for a sample 
of 400 adult volunteers (age 39 to 71 years old with mean age 
of 55 years). The rupture of a cerebral aneurysm usually 
results in internal bleeding such as a subarachnoid hemorrhage 
and intracranial hematoma [2]. The importance of studying 
aneurysms is that it affects around 2% of adults and in case of 
rupture such condition can lead to death if urgent medical 
intervention did not take place [3]. 

It has been shown in literature [4] that, due to gravity force 
acceleration, the aneurysm position affects the hydrodynamics 
of brain aneurysms. These results reported [4] that an 
aneurysm oriented in opposite direction of gravity 
acceleration, has a very low risk of thrombosis. Also it is 
reported [4], the greatest flow turbulence against the wall is 
found in the aneurysm oriented downwards, that is parallel to 
the force of gravity which causes higher risk of growth and 
rupture, in comparison with other conditions. 
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(FAA) mentions that little is known about the effects of high 
negative gravities on humans and that blood vessels in the 
brain can only tolerate weak gravitational forces. Four case 
reports of aircraft accidents due to gravity induced loss of 
consciousness were presented to proof that intense gravity is 
very hazardous [5]. 

It was reported in many cases that aneurysms could rupture 
due to negative gravitational forces that are induced in roller 
coaster rides. A case report published by the journal of 
neurosurgery presents a case of a 32-year old women that 
developed a traumatic distal anterior cerebral artery aneurysm 
from a roller coaster ride [6]. The report mentions that a 
relatively minor trauma caused by a roller coaster ride led to 
aneurysm formation while severe injuries from falls and road 
accidents cause aneurysm formation [6]. 

The aim of this study is to numerically study the effect of 
high vertical accelerations on hemodynamics and such 
accelerations can affect the initiation, growth and rupture of 
cerebral aneurysms. The study reports the effect of vertical 
acceleration on the WSS, the wall strain and the wall stresses 
of cerebral aneurysm. Procedure for Paper Submission 

II. PROBLEM FORMULATION 

A. Geometric Formulation  

A diagram of the computation domain of the terminal 
aneurysm is modeled using an idealized outline and is shown 
in Fig. 1 (a). Repetitive impingement against the vessel wall 
under pulsatile flows may induce fatigue, initiation and growth 
of aneurysms and it is expected that flow impingement on the 
tip of terminals generates unstable helical flow patterns near 
the wall. For the geometry, the model is divided into three 
sections of interest; (i) the aneurysm, (ii) the parent artery and 
(iii) the sister arteries. In our model, we are supposing the 
reasonability of using an idealized geometry. Dimensions for 
the model are derived from the actual patient angiograph 
images shown in Fig. 1 (b) in addition to other clinical reports 
from literature [7]-[9].  

The parent artery and the sister arteries are modeled as a 
tube of diameter . . 2.5	 mm and length of 10 mm. 
The sister arteries are bifurcating from the parent artery and 
are given the same radius as the parent artery for simplicity 
and since such arteries conditions have been observed in 
clinical patient angiograph image of a patient (Fig. 1 (b)). The 
length of parent and sister arteries are selected to be	 10 
mm. Five cases were studied for aneurysms with  0, 4, 6, 
and 12, and 12 millimeters for fixed parent arteries . .. For 
the five cases studied the aspect ratio / . .	 is calculated. 
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IV. CONCLUSION 

This study uses computational fluid dynamics analysis 
coupled with finite element analysis methods to explain how 
hypertension results from z-axis g-force acceleration and how 
that affects the aneurysm initiation, growth and possible 
rupture. An idealized aneurysm geometry is used to show that 
area averaged WSS is independent of z-axis acceleration, 
which means that such acceleration does not contribute to 
aneurysm formation/initiation. 
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