Search results for: propagation of voltage fluctuations.
1078 Application of STATCOM-SMES Compensator for Power System Dynamic Performance Improvement
Authors: Reza Sedaghati, Mojtaba Hakimzadeh, Mohammad Hasan Raouf, Mostafa Mirzadeh
Abstract:
Nowadays the growth of distributed generation within the bulk power system is feasible by using the optimal control of the transmission lines power flow. Static Synchronous Compensators (STATCOM) is effective for improving voltage stability but it can only exchange reactive power with the power grid. The integration of Superconducting Magnetic Energy Storage (SMES) with a STATCOM can extend the traditional STATCOM capabilities to four-quadrant bulk power system power flow control and providing exchange both the active and reactive power related to the STATCOM with the ac network. This paper shows how the SMES system can be connected to the ac system via the DC bus of a STATCOM and also analyzes how the integration of STATCOM and SMES allows the bus voltage regulation and power oscillation damping (POD) to be achieved simultaneously. The dynamic performance of the integrated STATCOM-SMES is evaluated through simulation by using PSCAD/EMTDC software and the compensation effectiveness of this integrated compensator is shown.
Keywords: STATCOM-SMES compensator, Power Oscillation Damping (POD), stabilizing, signal, voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28491077 Simulation of Voltage Controlled Tunable All Pass Filter Using LM13700 OTA
Authors: Bhaba Priyo Das, Neville Watson, Yonghe Liu
Abstract:
In recent years Operational Transconductance Amplifier based high frequency integrated circuits, filters and systems have been widely investigated. The usefulness of OTAs over conventional OP-Amps in the design of both first order and second order active filters are well documented. This paper discusses some of the tunability issues using the Matlab/Simulink® software which are previously unreported for any commercial OTA. Using the simulation results two first order voltage controlled all pass filters with phase tuning capability are proposed.
Keywords: All pass filter, Operational Transconductance Amplifier, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36201076 Physical Parameters for Reliability Evaluation
Abstract:
This paper presents ageing experiments controlled by the evolution of junction parameters. The deterioration of the device is related to high injection effects which modified the transport mechanisms in the space charge region of the junction. Physical phenomena linked to the degradation of junction parameters that affect the devices reliability are reported and discussed. We have used the method based on numerical analysis of experimental current-voltage characteristic of the junction, in order to extract the electrical parameters. The simultaneous follow-up of the evolutions of the series resistance and of the transition voltage allow us to introduce a new parameter for reliability evaluation.
Keywords: High injection, junction, parameters, reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13801075 A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Authors: Md. Fazlul Karim, Esa Al-Islam
Abstract:
This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. We develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.Keywords: Boundary-fitted nested grid model, finite difference method, Indonesian tsunami of 2004, Southern Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981074 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process
Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271073 Investigation of Constant Transconductance Circuit for Low Power Low-Noise Amplifier
Authors: Wei Yi Lim, M. Annamalai Arasu, M. Kumarasamy Raja, Minkyu Je
Abstract:
In this paper, the design of wide-swing constant transconductance (gm) bias circuit that generates bias voltage for low-noise amplifier (LNA) circuit design by using an off-chip resistor is demonstrated. The overall transconductance (Gm) generated by the constant gm bias circuit is important to maintain the overall gain and noise figure of the LNA circuit. Therefore, investigation is performed to study the variation in Gm with process, temperature and supply voltage (PVT). Temperature and supply voltage are swept from -10 °C to 85 °C and 1.425 V to 1.575 V respectively, while the process conditions are also varied to the extreme and the gm variation is eventually concluded at between -3 % to 7 %. With the slight variation in the gm value, through simulation, at worst condition of state SS, we are able to attain a conversion gain (S21) variation of -3.10 % and a noise figure (NF) variation of 18.71 %. The whole constant gm circuit draws approximately 100 µA from a 1.5V supply and is designed based on 0.13 µm CMOS process.
Keywords: Transconductance, LNA, temperature, process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41301072 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network
Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi
Abstract:
In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541071 Effect of Non Uniformity Factors and Assignment Factors on Errors in Charge Simulation Method with Point Charge Model
Authors: Gururaj S Punekar, N K Kishore Senior, H S Y Shastry
Abstract:
Charge Simulation Method (CSM) is one of the very widely used numerical field computation technique in High Voltage (HV) engineering. The high voltage fields of varying non uniformities are encountered in practice. CSM programs being case specific, the simulation accuracies heavily depend on the user (programmers) experience. Here is an effort to understand CSM errors and evolve some guidelines to setup accurate CSM models, relating non uniformities with assignment factors. The results are for the six-point-charge model of sphere-plane gap geometry. Using genetic algorithm (GA) as tool, optimum assignment factors at different non uniformity factors for this model have been evaluated and analyzed. It is shown that the symmetrically placed six-point-charge models can be good enough to set up CSM programs with potential errors less than 0.1% when the field non uniformity factor is greater than 2.64 (field utilization factor less than 52.76%).
Keywords: Assignment factor, Charge Simulation Method, High Voltage, Numerical field computation, Non uniformity factor, Simulation errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20511070 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.
Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7691069 Cultivation of Thymus by In Vitro And Hydroponics Combined Method
Authors: E. Sargsyan, A. Vardanyan, L. Ghalachyan, S. Bulgadaryan
Abstract:
Our results showed that for the growth of qualitative seedling and vegetative raw material of ðó. marschallianus Willd. and T. serphyllum L. it is more profitable to use the in vitro and hydroponics combined method. In in vitro culture it is possible to do micro-propagation whole year with 98-99% rhizogenesis. 30000 micro-plants were obtained from one explant during 9 months. Hydroponic conditions provide the necessary microclimate for microplants where the survival rate without acclimatization was 93.3%. The essential oil content in hydroponic dry herb of both species in vegetative and blossom phase was 1.3% whereas in wild plants it was 1.2%, the content of extractive substances and vitamin C also exceeded wild plants. Our biochemical and radiochemical investigations indicated that the medicinal raw materials obtained from hydroponic and wild plants of Thymus species correspond to the demands of SPh XI, and the content of artificial radionuclides does not exceed the MACL.Keywords: Hydroponics, In vitro, Micro-propagation, Thymus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24851068 Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications
Authors: G. Ramana Murthy, C. Senthilpari, P. Velrajkumar, Lim Tien Sze
Abstract:
In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.
Keywords: CSA Full Adder, Delay unit, IIR filter, Low-Power, PDP, Parametric Analysis, Propagation Delay, Throughput, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38141067 CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors
Authors: Kittipong Tripetch, Nobuhiko Nakano
Abstract:
Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at ±0.9 V.
Keywords: Complementary common gate, complementary regulated cascode, current mirror, floating active resistors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9571066 A New Analytical Approach for Free Vibration of Membrane from Wave Standpoint
Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar
Abstract:
In this paper, an analytical approach for free vibration analysis of rectangular and circular membranes is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for rectangular and circular membranes are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of membranes. Subsequently, the eigenvalue problem for free vibration of membrane is formulated and the equation of membrane natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.Keywords: Rectangular and circular membranes, propagation matrix, reflection matrix, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651065 A Superior Delay Estimation Model for VLSI Interconnect in Current Mode Signaling
Authors: Sunil Jadav, Rajeevan Chandel Munish Vashishath
Abstract:
Today’s VLSI networks demands for high speed. And in this work the compact form mathematical model for current mode signalling in VLSI interconnects is presented.RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The on-chip inductance effect is dominant at lower technology node is emulated into an equivalent resistance. First order transfer function is designed using finite difference equation, Laplace transform and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. The novel proposed current mode model shows superior performance as compared to voltage mode signalling. Analysis shows that current mode signalling in VLSI interconnects provides 2.8 times better delay performance than voltage mode. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.
Keywords: Current Mode, Voltage Mode, VLSI Interconnect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24501064 Design and Analysis of an 8T Read Decoupled Dual Port SRAM Cell for Low Power High Speed Applications
Authors: Ankit Mitra
Abstract:
Speed, power consumption and area, are some of the most important factors of concern in modern day memory design. As we move towards Deep Sub-Micron Technologies, the problems of leakage current, noise and cell stability due to physical parameter variation becomes more pronounced. In this paper we have designed an 8T Read Decoupled Dual Port SRAM Cell with Dual Threshold Voltage and characterized it in terms of read and write delay, read and write noise margins, Data Retention Voltage and Leakage Current. Read Decoupling improves the Read Noise Margin and static power dissipation is reduced by using Dual-Vt transistors. The results obtained are compared with existing 6T, 8T, 9T SRAM Cells, which shows the superiority of the proposed design. The Cell is designed and simulated in TSPICE using 90nm CMOS process.
Keywords: CMOS, Dual-Port, Data Retention Voltage, 8T SRAM, Leakage Current, Noise Margin, Loop-cutting, Single-ended.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34691063 Designing and Manufacturing High Voltage Pulse Generator with Adjustable Pulse and Monitoring Current and Voltage: Food Processing Application
Authors: H. Mirzaee, A. Pourzaki
Abstract:
Using strength Pulse Electrical Field (PEF) in food industries is a non-thermal process that can deactivate microorganisms and increase penetration in plant and animals tissues without serious impact on food taste and quality. In this paper designing and fabricating of a PEF generator has been presented. Pulse generation methods have been surveyed and the best of them selected. The equipment by controller set can generate square pulse with adjustable parameters such as amplitude 1-5kV, frequency 0.1-10Hz, pulse width 10-100s, and duty cycle 0-100%. Setting the number of pulses, and presenting the output voltage and current waveforms on the oscilloscope screen are another advantages of this equipment. Finally, some food samples were tested that yielded the satisfactory results. PEF applying had considerable effects on potato, banana and purple cabbage. It caused increase Brix factor from 0.05 to 0.15 in potato solution. It is also so effective in extraction color material from purple cabbage. In the last experiment effects of PEF voltages on color extraction of saffron scum were surveyed (about 6% increasing yield).Keywords: PEF, Capacitor, Switch, IGBT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42151062 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet
Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci
Abstract:
The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.
Keywords: Insulator, pollution flashover, high impulse voltage, water jet model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12471061 Characteristic Study on Conventional and Soliton Based Transmission System
Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian
Abstract:
Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and Hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system respectively and evaluate the system performance in terms of Quality factor. From the analysis, we could prove that the soliton pulse has the consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.Keywords: Soliton, dispersion length, Soliton period, Return-tozero (RZ), Q-factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16401060 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15511059 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.
Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24471058 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit
Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam
Abstract:
According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.
Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031057 Star-Hexagon Transformer Supported UPQC
Authors: Yash Pal, A.Swarup, Bhim Singh
Abstract:
A new topology of unified power quality conditioner (UPQC) is proposed for different power quality (PQ) improvement in a three-phase four-wire (3P-4W) distribution system. For neutral current mitigation, a star-hexagon transformer is connected in shunt near the load along with three-leg voltage source inverters (VSIs) based UPQC. For the mitigation of source neutral current, the uses of passive elements are advantageous over the active compensation due to ruggedness and less complexity of control. In addition to this, by connecting a star-hexagon transformer for neutral current mitigation the over all rating of the UPQC is reduced. The performance of the proposed topology of 3P-4W UPQC is evaluated for power-factor correction, load balancing, neutral current mitigation and mitigation of voltage and currents harmonics. A simple control algorithm based on Unit Vector Template (UVT) technique is used as a control strategy of UPQC for mitigation of different PQ problems. In this control scheme, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, thereby reducing the computational delay. Moreover, no extra control is required for neutral source current compensation; hence the numbers of current sensors are reduced. The performance of the proposed topology of UPQC is analyzed through simulations results using MATLAB software with its Simulink and Power System Block set toolboxes.Keywords: Power-factor correction, Load balancing, UPQC, Voltage and Current harmonics, Neutral current mitigation, Starhexagon transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23281056 Quasi Multi-Pulse Back-to-Back Static Synchronous Compensator Employing Line Frequency Switching 2-Level GTO Inverters
Authors: A.M. Vural, K.C. Bayindir
Abstract:
Back-to-back static synchronous compensator (BtBSTATCOM) consists of two back-to-back voltage-source converters (VSC) with a common DC link in a substation. This configuration extends the capabilities of conventional STATCOM that bidirectional active power transfer from one bus to another is possible. In this paper, VSCs are designed in quasi multi-pulse form in which GTOs are triggered only once per cycle in PSCAD/EMTDC. The design details of VSCs as well as gate switching circuits and controllers are fully represented. Regulation modes of BtBSTATCOM are verified and tested on a multi-machine power system through different simulation cases. The results presented in the form of typical time responses show that practical PI controllers are almost robust and stable in case of start-up, set-point change, and line faults.
Keywords: Flexible AC Transmission Systems (FACTS), Backto-Back Static Synchronous Compensator (BtB-STATCOM), quasi multi-pulse voltage source converter, active power transfer; voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21471055 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach
Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang
Abstract:
A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.Keywords: Seismic Wave Propagation, Multi-dimension WaveDigital Filters, Partial Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14351054 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives
Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das
Abstract:
Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.Keywords: Fire dynamics, flame propagation, locomotive fire, soot flow pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11381053 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear
Authors: Barenten Suciu, Yuya Nakamoto
Abstract:
Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.
Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7231052 Force on a High Voltage Capacitor with Asymmetrical Electrodes
Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký
Abstract:
When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This phenomenon is most likely to be caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. A method to measure this force has been devised and used. A formula describing the force has also been derived. After comparing the data gained through experiments with those acquired using the theoretical formula, a difference was found above a certain value of current. This paper also gives reasons for this difference.Keywords: Capacitor with asymmetrical electrodes, Electricalfield, Mechanical force, Motion of ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19721051 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22621050 Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique
Authors: R. Sarathi, M. G. Danikas, Y. Chen, T. Tanaka
Abstract:
In the present work, Pulsed Electro Acoustic (PEA) technique was adopted to understand the space charge dynamics in elastomeric material. It is observed that the polarity of the applied DC voltage voltage and its magnitude alters the space charge dynamics in insulation structure. It is also noticed that any addition of compound to the base material/processing technique have characteristic variation in the space charge injection process. It could be concluded based on the present work that the plasticizer could inject heterocharges into the insulation medium. Also it is realized that space charge magnitude is less with the addition of plasticizer. In the PEA studies, it is observed that local electric field in the insulating material can be much more than applied electric field due to space charge formation. One of the important conclusions arrived at based on PEA technique is that one could understand the safe operating electric field of an insulation material and the charge trap sites.Keywords: Pulsed electro acoustic technique, space charge, DCvoltage, elastomers, Electric field, high voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461049 A Direct Down-conversion Receiver for Low-power Wireless Sensor Networks
Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez
Abstract:
A direct downconversion receiver implemented in 0.13 μm 1P8M process is presented. The circuit is formed by a single-end LNA, an active balun for conversion into balanced mode, a quadrature double-balanced passive switch mixer and a quadrature voltage-controlled oscillator. The receiver operates in the 2.4 GHz ISM band and complies with IEEE 802.15.4 (ZigBee) specifications. The circuit exhibits a very low noise figure of only 2.27 dB and dissipates only 14.6 mW with a 1.2 V supply voltage and is hence suitable for low-power applications.
Keywords: LNA, Active Balun, Passive Mixer, VCO, IEEE 802.15.4(ZigBee).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350