Search results for: urban heat island thermal map.
2663 Future Housing Energy Efficiency Associated with the Auckland Unitary Plan
Authors: Bin Su
Abstract:
The draft Auckland Unitary Plan outlines the future land used for new housing and businesses with Auckland population growth over the next thirty years. According to Auckland Unitary Plan, over the next 30 years, the population of Auckland is projected to increase by one million, and up to 70% of total new dwellings occur within the existing urban area. Intensification will not only increase the number of median or higher density houses such as terrace house, apartment building, etc. within the existing urban area but also change mean housing design data that can impact building thermal performance under the local climate. Based on mean energy consumption and building design data, and their relationships of a number of Auckland sample houses, this study is to estimate the future mean housing energy consumption associated with the change of mean housing design data and evaluate housing energy efficiency with the Auckland Unitary Plan.
Keywords: Auckland Unitary Plan, Building thermal design, Housing design, Housing energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20762662 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field
Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu
Abstract:
This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.
Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19342661 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering
Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif
Abstract:
The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The processed bulk nanocrystalline alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti. These phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.
Keywords: Nanocrystalline Aluminum Alloys, Mechanical Alloying, Sintering, Hardness, Thermal Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25682660 Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System
Authors: Tatyana R. Radeva, Ivan S. Yatchev, Dimitar N. Karastoyanov, Nikolay I. Stoimenov, Stanislav D. Gyoshev
Abstract:
The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.
Keywords: Busbar system, coupled problems, finite element method, short-circuit currents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29762659 Gas Condensing Unit with Inner Heat Exchanger
Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga
Abstract:
Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.
Keywords: Gas condensing unit, filling, inner heat exchanger, package, spraying, tunes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14592658 Thermal Analysis of Toroidal Transformers Using Finite Element Method
Authors: Adrian T.
Abstract:
In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Temperature distribution, thermal analysis, toroidal transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35782657 Predicting Radiative Heat Transfer in Arbitrary Two and Three-Dimensional Participating Media
Authors: Mohammad Hadi Bordbar, Timo Hyppänen
Abstract:
The radiative exchange method is introduced as a numerical method for the simulation of radiative heat transfer in an absorbing, emitting and isotropically scattering media. In this method, the integro-differential radiative balance equation is solved by using a new introduced concept for the exchange factor. Even though the radiative source term is calculated in a mesh structure that is coarser than the structure used in computational fluid dynamics, calculating the exchange factor between different coarse elements by using differential integration elements makes the result of the method close to that of integro-differential radiative equation. A set of equations for calculating exchange factors in two and threedimensional Cartesian coordinate system is presented, and the method is used in the simulation of radiative heat transfer in twodimensional rectangular case and a three-dimensional simple cube. The result of using this method in simulating different cases is verified by comparing them with those of using other numerical radiative models.Keywords: Exchange factor, Numerical simulation, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20252656 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector
Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy
Abstract:
Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.
Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38942655 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data
Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin
Abstract:
Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.
Keywords: Big data, correlation analysis, data recommendation system, urban data network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11052654 A Numerical Study on Thermal Dissociation of H2S
Authors: M. Moghiman, S. M. Javadi, A. R. Moghiman, S. Baghdar Hosseini
Abstract:
The main issue in sweetening natural gas is H2S dissociation. The present study is concerned with simulating thermal dissociation of H2S in industrial natural gas carbon black furnace. The comparison of calculated results against experimental measurements shows good agreement. The results show that sulfur derived from H2S thermal dissociation peaked at φ=0.95. H2S thermal dissociation is enhanced in equivalence ratio upper than 1 and H2S oxidization is increased in equivalence ratio lower than 1. H2 concentration of H2S thermal dissociation is increased with increase of equivalence ratio up to 1. Also, H2S concentration decreased in outlet as equivalence ratio increases. H2S thermal dissociation to hydrogen and Sulfur reduces its toxic characteristics and make economical benefits.Keywords: Equivalence ratio, H2S, natural gas furnace, thermaldissociation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24342653 Lattice Boltzmann Simulation of the Carbonization of Wood Particle
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
A numerical study based on the Lattice Boltzmann Method (LBM) is proposed to solve one, two and three dimensional heat and mass transfer for isothermal carbonization of thick wood particles. To check the validity of the proposed model, computational results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and thermal boundary conditions, on the evolution of the local temperature and the mass distributions of the wood particle during carbonization
Keywords: Lattice Boltzmann Method, pyrolysis conduction, carbonization, Heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27072652 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler
Authors: A. Falavand Jozaei, A. Ghafouri
Abstract:
Operation enhancement in an air cooler depends on rate of heat transfer, and pressure drop. In this paper for a given heat duty, study of the effects of FPI (Fin Per Inch) and fin type (circular and hexagonal fins) on heat transfer, and pressure drop in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ softwares are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI steadily, and the Q/Δp ratio increases to FPI=12 and then decreased gradually to FPI=15, and Q/Δp ratio is maximum at FPI=12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI)Keywords: Air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46922651 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18992650 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.
Keywords: Creeping control strategy, direct shift gearbox, temperature variation, wet clutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7222649 Cubic Splines and Fourier Series Approach to Study Temperature Variation in Dermal Layers of Elliptical Shaped Human Limbs
Authors: Mamta Agrawal, Neeru Adlakha, K.R. Pardasani
Abstract:
An attempt has been made to develop a seminumerical model to study temperature variations in dermal layers of human limbs. The model has been developed for two dimensional steady state case. The human limb has been assumed to have elliptical cross section. The dermal region has been divided into three natural layers namely epidermis, dermis and subdermal tissues. The model incorporates the effect of important physiological parameters like blood mass flow rate, metabolic heat generation, and thermal conductivity of the tissues. The outer surface of the limb is exposed to the environment and it is assumed that heat loss takes place at the outer surface by conduction, convection, radiation, and evaporation. The temperature of inner core of the limb also varies at the lower atmospheric temperature. Appropriate boundary conditions have been framed based on the physical conditions of the problem. Cubic splines approach has been employed along radial direction and Fourier series along angular direction to obtain the solution. The numerical results have been computed for different values of eccentricity resembling with the elliptic cross section of the human limbs. The numerical results have been used to obtain the temperature profile and to study the relationships among the various physiological parameters.Keywords: Blood Mass Flow Rate, Metabolic Heat Generation, Fourier Series, Cubic splines and Thermal Conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18002648 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.
Keywords: Invar alloy, Aluminum, Phase equilibrium, thermal expansion coefficient, microstructure, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26552647 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity
Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif
Abstract:
In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.
Keywords: Thermoelasticity, three-dimensional, Laplace transforms, Fourier transforms, thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7512646 Economic Analysis of Domestic Combined Heat and Power System in the UK
Authors: Thamo Sutharssan, Diogo Montalvao, Yong Chen, Wen-Chung Wang, Claudia Pisac
Abstract:
A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.
Keywords: Combined Heat and Power, Clean Energy, Hydrogen Fuel Cell, Economic Analysis of CHP, Zero Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20672645 Feasibility Study on Designing a Flat Loop Heat Pipe (LHP) to Recover the Heat from Exhaust of a Gas Turbine
Authors: M.H.Ghaffari
Abstract:
A theoretical study is conducted to design and explore the effect of different parameters such as heat loads, the tube size of piping system, wick thickness, porosity and hole size on the performance and capability of a Loop Heat Pipe(LHP). This paper presents a steady state model that describes the different phenomena inside a LHP. Loop Heat Pipes(LHPs) are two-phase heat transfer devices with capillary pumping of a working fluid. By their original design comparing with heat pipes and special properties of the capillary structure, they-re capable of transferring heat efficiency for distances up to several meters at any orientation in the gravity field, or to several meters in a horizontal position. This theoretical model is described by different relations to satisfy important limits such as capillary and nucleate boiling. An algorithm is developed to predict the size of the LHP satisfying the limitations mentioned above for a wide range of applied loads. Finally, to assess and evaluate the algorithm and all the relations considered, we have used to design a new kind of LHP to recover the heat from the exhaust of an actual Gas Turbine. By finding the results, it showed that we can use the LHP as a very high efficient device to recover the heat even in high amount of loads(exhaust of a gas turbine). The sizes of all parts of the LHP were obtained using the developed algorithm.Keywords: Loop Heat Pipe, Head Load, Liquid-Vapor Interface, Heat Transfer, Design Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20732644 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application
Authors: Sadeep Sasidharan, T. B. Isha
Abstract:
Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.Keywords: SRM, induction motor, IPM, thermal analysis, loss models, electric vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10372643 Synergies between Physical and Electronic Developments: A Case Study of Taipei City
Abstract:
It is claimed that a new style of urban planning and policy intertwined with ICT is emerging and urban planning and ICT policy are no longer considered as separate disciplines. The interactions between electronic spaces and urban spaces are so complex and uncertain that confront urban planners and policy makers with great challenges. However, the assumption about the relationship between ICT and urban planning is mainly based on North American and European experiences. In the light of empirical evidence from Taipei City, this paper shows that this new type of urban planning and policy intertwined with ICT has existed in Asian city for a decade as well. Based on these results, this paper further reviews how the Taipei City government implements this new type of urban ICT planning and the validity and realism of its underlying assumptions. Finally, it also explores the extent to which urban ICT planning could promote positive synergies between physical and electronic developments.Keywords: ICT, Taipei City, Urban ICT Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14362642 Application of Smart Temperature Information Material for The Evaluation of Heat Storage Capacity and Insulation Capacity of Exterior Walls
Authors: Chih-Yuan Chang, Jin-Chiuan Chang, San-Shan Hung, Cheng-Jui Hsu
Abstract:
The heat storage capacity of concrete in building shells is a major reason for excessively large electricity consumption induced by indoor air conditioning. In this research, the previously developed Smart Temperature Information Material (STIM) is embedded in two groups of exterior wall specimens (the control group contains reinforced concrete exterior walls and the experimental group consists of tiled exterior walls). Long term temperature measurements within the concrete are taken by the embedded STIM. Temperature differences between the control group and the experimental group in walls facing the four cardinal directions (east, west, south, and north) are evaluated. This study aims to provide a basic reference for the design of exterior walls and the selection of heat insulation materials.
Keywords: building envelope, sensor, energy, thermal insulation, reinforced concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15972641 The Extent to Which Social Factors Affect Urban Functional Mutations and Transformations
Authors: S. Mozuriunaite
Abstract:
Contemporary metropolitan areas and large cities are dynamic, rapidly growing and continuously changing. Thus, urban transformations and mutations are not a new phenomenon, but rather a continuous process. Basic factors of urban transformation are related to development of technologies, globalisation, lifestyle, etc., which in combination with local factors have generated an extremely great variety of urban development conditions. This article discusses the main urbanisation processes in Lithuania during last 50-year period and social factors affecting urban functional mutations.Keywords: Dispersion, functional mutations, urbanisation, urban mutations, social factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15482640 Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet
Authors: Kai-Long Hsiao, BorMing Lee
Abstract:
In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection.Keywords: Conjugate heat and mass transfer, Radiation effect, Magnetic effect, Viscoelastic fluid, Viscous dissipation, Stretchingsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16802639 Urban Form, Heritage, and Disaster Prevention: What Do They Have in Common?
Authors: Milton Montejano Castillo, Tarsicio Pastrana Salcedo
Abstract:
Based on the hypothesis that disaster risk is constructed socially and historically, this article shows the importance of keeping alive the historical memory of disaster by means of architectural and urban heritage conservation. This is illustrated with three examples of Latin American World Heritage cities, where disasters like floods and earthquakes have shaped urban form. Therefore, the study of urban form or "Urban Morphology" is proposed as a tool to understand and analyze urban transformations with the documentation of the occurrence of disasters. Lessons learned from such cities may be useful to reduce disasters risk in contemporary built environments.Keywords: Conservation, disaster risk reduction, urban morphology, world heritage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23762638 Toward Integrative Stormwater Design in Urban Spaces
Authors: Bruce K. Ferguson
Abstract:
The design requirements for successful human accommodation in urban spaces are well known; and the range of facilities available for meeting urban water quality and quantity requirements is also well established. Their competing requirements must be reconciled in order for urban spaces to be successful for both. This paper outlines the separate human and water imperatives and their interactions in urban spaces. Stormwater management facilities- relative potential contributions to urban spaces are contrasted, and design choices for achieving those potentials are described. This study uses human success of urban space as the evaluative criterion of stormwater amenity: human values call on stormwater facilities to contribute to successful human spaces. Placing water-s contribution under the overall idea of successful urban space is an evolution from previous subjective evaluations. The information is based on photographs and notes from approximately 1,000 stormwater facilities and urban sites collected during the last 35 years in North America and overseas, and the author-s experience on multi-disciplinary design teams. This conceptual study combines the disciplinary roles of engineering, landscape architecture, and sociology in effecting successful urban design.Keywords: Stormwater, SUDS, Urban design, Values, Urban space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18412637 Urban Roads of Bhopal City
Authors: Anshu Gupta
Abstract:
Quality evaluation of urban environment is an integral part of efficient urban environment planning and management. The development of fuzzy set theory (FST) and the introduction of FST to the urban study field attempts to incorporate the gradual variation and avoid loss of information. Urban environmental quality assessment pertain to interpretation and forecast of the urban environmental quality according to the national regulation about the permitted content of contamination for the sake of protecting human health and subsistence environment . A strategic motor vehicle control strategy has to be proposed to mitigate the air pollution in the city. There is no well defined guideline for the assessment of urban air pollution and no systematic study has been reported so far for Indian cities. The methodology adopted may be useful in similar cities of India. Remote sensing & GIS can play significant role in mapping air pollution.Keywords: GIS, Pollution, Remote Sensing, Urban.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26412636 Electric Field Impact on the Biomass Gasification and Combustion Dynamics
Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis
Abstract:
Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10%
Keywords: Biomass, combustion, electrodynamic control, gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16112635 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding
Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud
Abstract:
A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32272634 Innovative Techniques for Characterization of Nonwoven Insulation Materials Embedded with Aerogel
Authors: Mohanapriya Venkataraman, Rajesh Mishra, Jakub Weiner, Adnan Mazari, Jiri Militky, Veera Kumar Arumugam
Abstract:
The major objective of this study is to understand the potential of a newly fabricated equipment to study the thermal properties of nonwoven textile fabrics treated with aerogel at subzero temperatures. Thermal conductivity was calculated by using the empirical relation Fourier’s law, The relationship between the thermal conductivity and thermal resistance of the samples were studied at various environmental temperatures (which was set in the clima temperature system between +25oC to -25oC). The newly fabricated equipment was found to be a suitable for measuring at subzero temperatures. This field of measurements is being developed and will be the subject of further research which will be more suitable for measurement of the various thermal characteristics.
Keywords: Thermal Measurements, Aerogel, Nonwoven, Hot plate Heading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247