
 

Abstract—The radiative exchange method is introduced as a 

numerical method for the simulation of radiative heat transfer in an 

absorbing, emitting and isotropically scattering media. In this 

method, the integro-differential radiative balance equation is solved 

by using a new introduced concept for the exchange factor. Even 

though the radiative source term is calculated in a mesh structure that 

is coarser than the structure used in computational fluid dynamics, 

calculating the exchange factor between different coarse elements by 

using differential integration elements makes the result of the method 

close to that of integro-differential radiative equation. A set of 

equations for calculating exchange factors in two and three-

dimensional Cartesian coordinate system is presented, and the 

method is used in the simulation of radiative heat transfer in two-

dimensional rectangular case and a three-dimensional simple cube. 

The result of using this method in simulating different cases is 

verified by comparing them with those of using other numerical 

radiative models.  

Keywords—Exchange factor, Numerical simulation, Thermal 

radiation. 

I. INTRODUCTION

ECENT improvements in computer power have increased

the interest of engineers and researchers to simulate their 

problems with computational methods. A lot of computational 

tools and methods have been developed in the last decades to 

analyze  fluid dynamics, combustion, and different modes of 

heat transfer, which can be used in two- and three-dimensional 

configurations.  

Among other practical problems, one of the most important 

practical problems having a highlighted role in the design and 

operation of high temperature industrial equipment, analyzing 

radiative heat transfer in the participating media, has received 

considerable attention. Radiative heat transfer in the 

participating media than can absorb, emit and scatter radiation 

, and is usually surrounded by emitting, absorbing and 
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reflecting walls, is a significant in many industrial applications, 

such as boilers, furnaces and jet engines. In addition to 

industrial interest, radiation heat transfer is an effective 

parameter in the effect of dust, carbon dioxide and other 

participating gases on the global environment. In most 

industrial applications, radiative heat transfer is accompanied 

by turbulent reactive flow and combustion. Thus, an ideal 

numerical radiative model should be capable of being coupled 

with other numerical methods in computational fluid dynamics 

and combustion modeling. 

The electromagnetic wave theory and quantum mechanics are 

two hypotheses for describing the physics of thermal radiation. 

Even though most of the phenomena in thermal radiation can 

be explained by the electromagnetic wave theory, there are 

some exceptions which can not be viewed by the 

electromagnetic wave theory, such as the spectral distribution 

of energy emitted from a body, and the radiative properties of 

gases [1]. Based on these two physical hypotheses, the 

numerical radiative methods are divided into two main 

categories ; ray tracing methods and flux methods. 

The Monte Carlo method [1-4] and discrete transfer radiation 

method [5-7] are well established ray tracing methods based 

on following the energy bundles (photons) by using the 

concept of random numbers until they are absorbed or exit 

from the system. The algorithms of these methods are basically 

different from the algorithms of the methods used in 

computational fluid dynamics. In addition, they are time 

consuming and computationally demanding. These problems 

are the reason why these methods have seldom been used in 

practical applications. 

The flux methods, such as discrete ordinate method [8-14] and 

finite volume method [15-18], are based on solving the 

integro-differential equation of radiation in descritized 

geometry. Chandrasekar [8] presented in 1950 the basics of the 

discrete ordinate method (DOM), and later Lathrop and 

Carlson [9] and Truelove, Fiveland and Jamaluddin [10-14] 

developed this method further. The capability of this method is 

improved by decreasing the ray effects and false scattering, 

and using more accurate quadratures. However, in this method, 

for coupling radiative transfer and other physical phenomena, 

such as turbulent reactive flow and combustion, the radiative 

transfer equation should be solved in the same mesh structure 

as the one used to solve the other balance equations, and 

therefore radiative interaction between neighbor calls is taken 

Predicting Radiative Heat Transfer in Arbitrary 

Two and Three-Dimensional Participating 

Media   

Mohammad Hadi Bordbar, and Timo Hyppänen 

R

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:2, No:11, 2008 

804International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:2
, N

o:
11

, 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
79

8.
pd

f



into account. 

Raithby and Chui [15] have introduced the radiative finite 

volume method (FVM) based on solving the radiative transfer 

equation (RTE) in descritized geometry. Actually, the radiative 

balance between the faces of the control volume is done by 

attenuation and augmentation of radiant energy within a 

control volume and a control angle. In the last decades, a lot of 

research has been conducted to improve the radiative FVM 

with different types of mesh structure and geometries [15-18]. 

Although the radiative FVM and DOM can be coupled easily 

with other numerical solutions in fluid flow and combustion 

modeling and model complex geometry, they basically work 

on the bases of diffuse radiation, when just the radiation 

interaction between neighbor cells is taken into account. In 

most problems for achieving a good level of accuracy, the 

radiative interaction between all points of the media and 

surrounding walls should be taken into account for example 

when the participating media is optically thin because of the 

low local extinction coefficient or size of the cells. 

The zone method [19-22] is one of the oldest numerical 

methods proposed for predicting radiant heat transfer in 

participating media. In the zone method, the amount of 

radiation exchange between each pair of zones is defined by 

using a special coefficients named “Direct Exchange Area”. 

This coefficient between a source cell “ i ” and a destination 

zone “ j ” is defined as the fraction of the emitting radiative 

heat power from source zone “ i ” that is absorbed in “ j ” (if 

“ j ” is a volume zone) or reaching to “ j ” (if “ j ” is a surface 

zone). The amount of net radiative heat transfer for each zone 

is defined by another coefficient named heat flux area, which 

should be calculated from the direct exchange area. Finally, 

the net radiative heat transfer is added to the overall energy 

balance in each zone. Finally, by solving these equations and 

inserting the effect of radiative thermal boundary conditions on 

the wall, the temperature of all the zones are obtained. 

Bordbar and Hyppänen [22] have employed the radiative zone 

method coupled by combustion and flow modeling, to predict 

the effect of changing the fuel on the operation of a boiler. 

Although in the zone method the radiative interaction between 

all points of the geometry is taken into account, and therefore 

the radiative zone method has better physical basis, there are 

still several unsolved problems in this method such as the 

singularity problem in the calculation of the direct exchange 

area, and  the supporting complex geometries. 

In 1993, Maruyama [23] introduced a new definition of view 

factors and developed the ray emission method for analyzing 

radiative heat transfer in arbitrary three-dimensional surfaces 

with specular and diffuse reflection. This idea has grown 

gradually and was finally used by Maruyama and Aihara [24], 

to develop a new generalized numerical radiative model for 

simulating radiative heat transfer in fully participating media 

surrounded by surfaces with specular and diffuse reflection. 

They developed a kind of ray tracing method for calculating 

view factors. 

In this article, the theoretical basis of a new method named 

radiative exchange method is presented. The basic idea, as 

illustrated in Fig. 1, is to solve the radiative heat transfer in a 

mesh structure that is coarser than the structure used for 

solving other balance equations, such as the mass and 

momentum balance equations. 

The calculation of the flow field and other modes of heat and 

mass transfer (e.g. combustion, conduction and convection) 

can be done in CFD commercial softwares like FLUENT or 

CFX, and the calculation of radiative heat transfer is done in a 

separate box. The information needed for calculating the 

radiative source term is taken from the CFD solver for the fine 

mesh structure used in the flow calculation, and is used in the 

calculation of the properties for the coarser cells, which are 

used in calculating the radiative source terms. After calculating 

the radiative source term with the radiative exchange method 

in the coarse mesh structure, the result is interpolated over the 

fine structure and the calculated values are added to the overall 

energy balance equations. 

The definition of the exchange factor in the radiative exchange 

method is different from the definition of the direct exchange 

area in the radiative zone method. In this new concept of the 

exchange factor, the radiative interaction between all points of 

the geometry is taken into account. 

In the next sections, after describing the theoretical basis of 

radiative balance in the radiative exchange method, the new 

concept of the exchange factor is introduced and the related 

equations for calculating exchange factors in two and three-

dimensional configurations are derived. The result of using 

this method in the simulation of radiative transfer in a 2D 

simple rectangular and a 3D simple cube is presented and 

compared with the result of using other numerical radiative 

methods, such as the DO and P1 approximation methods.  

II. DIFFERENT MESH STRUCTURE USED IN THE RADIATIVE 

EXCHANGE METHOD

To clarify the meaning of the different terms used to describe 

the radiative exchange method in this paper, three different 

mesh structures used in the approach to be coupled with CFD 

solvers, are introduced in this section before going through the 

theory of the method.   

A. Fine Mesh Structure 

This structure is used in the CFD solver for solving other 

balance equations except the radiative balance equation, such 

as the mass, momentum, combustion and turbulence equations.   

Fig. 1 The basic idea of radiative exchange method
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B. Coarse Mesh Structure 

As in the zone method, in the radiative exchange method the 

participating media and its walls are decomposed to some 

finite volume and surface cells. The radiative balance equation 

is written for these large size cells and the amount of radiative 

source terms is calculated in the centers of these cells. The 

amount of radiative source term on the walls contain the 

distribution of the net radiative heat flux in the walls, whereas 

the radiative source terms in the volume cell centers are used 

to obtain the radiative source term in the fine cell centers by 

using different interpolation techniques. After finding the 

radiative source terms in the cell centers, they are added to the 

overall energy balance equation in the solver to obtain the new 

temperature field. 

C. Integration Structure 

The definition of exchange factors and its equations are 

described in the next sections. Briefly, to calculate the 

exchange factor between the different coarse cells in the 

system, it is necessary to calculate some finite integrals over 

the volume or area of the coarse cells. It is assumed that the 

integration elements should be optically thin enough to be 

considered as differential radiant elements, so that no 

integration is needed for calculating the exchange factor 

between the integration elements,. By this assumption, also the 

amount of radiative outgoing power from the volume 

integration elements, which is absorbed or scattered within the 

element itself, can be ignored. This parameter is defined as the 

self-extinction and is discussed in the next sections. 

III. RADIATIVE BALANCE IN THE RADIATIVE EXCHANGE 

METHOD

A.  Integro-Differential Equation of Radiation 

The general governing equation of radiative heat transfer is an 

intrgro-differential equation. As illustrated in Fig. 2, for a 

simple cubic volume cell containing participating media, the 

radiation intensity at r
�

 in the direction s
�

can be stated from 

radiative balance as : 
4

4
2

0

( , )
( ) ( , ) ( , ) ( . )

4

s
a as

kdI r s T
k k I r s k n I r s s s d

ds

πσ

π π
′ ′+ + = + Φ Ω∫

� �

� � � � � � (1) 

where 
a

k  and 
s

k are the spectral absorption and scattering 

coefficients, respectively. s is the path length in direction 

s
�

, ( . )s s′Φ
� �

is the phase function from direction s
�

to s′
�

, and  

Ω  is the solid angle. 

As shown in Fig.2, the change of radiative intensity in distance 

ds is the sum of the emission power of the gas molecules and 

additional scattering minus the amount of loss due to 

absorption and scattering. 

For the calculation of radiative attenuation between two points 

that is approximated to a single beam, the following form of 

the balance equation can be written: 

( , )
( , )

dI r s
I r s

ds
β= −

� �

� �                                                     (2)

where β  represents the extinction coefficient, i.e. sum of

scattering and absorption coefficients. This equation is used 

for calculating attenuation between the integration elements 

during the calculation of the exchange factor between coarse 

cells. 

B. Radiative Balance in Radiative Exchange Method 

As mentioned above, in the radiative exchange method, the 

participating gas and its walls are decomposed to some finite 

volume and surface cells, and the radiative balance is derived 

for each of them. If we assume that there is M surface and 

N volume coarse cells in the system, then for each coarse cell, 

the amount of the radiative source term is equal to the 

difference between incoming radiative power from other cells 

in the system to this cell and the outgoing radiative power from 

this cell to the other cells in the system.  

For the individual volume cell, the amount of outgoing 

radiative power is the sum of the scattering and emission 

power of the gas molecules. The scattering power is

proportional to the incoming radiative power from other cells. 

Therefore, by defining the exchange factor from cell “ j ”, 

which can be a volume or surface cell, to volume cell “ i ”,
ji

ϒ , 

is defined as the ratio of the amount of outgoing radiative 

power from cell “ j ”, which is absorbed or scattered in volume 

cell “ i ” to the amount of outgoing radiative power from cell 

“ j ”. Thus, for the differential volume cell when the amount of 

self-extinction can be ignored, it is driven that 

( ) ( )4

, , , ,

1 1

4

i

N M

out i e s i ji out j ji out j

j jV
j i

q k T dV k q qσ
= =
≠

 
 = + ϒ + ϒ
 
  

∑ ∑∫ (3) 

where , , , ,
e s

k k V N M represent the emission coefficient and 

scattering coefficient, the volume of the cell, the number of 

volume cells in the system, and the number of surface cells in 

the system, respectively. For the non-differential volume cell, 

the effect of self extinction should be considered in the 

calculation of outgoing radiative power from the cell, and 

therefore (3) is modified to the following equation: 

( ) ( )4

, , , ,

1 1

(1 ) 4

i

N M

out i ii e s i ji out j ji out j

j jV
j i

q k T dV k q qσ
= =
≠

  
  = − ϒ + ϒ + ϒ  
    

∑ ∑∫
(4) 

Fig. 2 Radiative balance for simple volume cubic cell containing 

participating gas
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where 
ii

ϒ is the self-extinction within volume cell “ i ”. 

For the coarse surface cell, the amount of outgoing power is 

the sum of the emission and reflection power, and the 

reflection power is proportional to the incoming power from 

other cells. Therefore, by defining the exchange factor from 

cell “ j ” that can be the surface or volume to surface cell

“ i ”,
ji

ϒ , is defined as the ratio of the amount of outgoing

radiative power from cell “ j ” that reaches to surface cell “ i ” 

to the amount of outgoing radiative power from cell “ j ”.  

Thus, the following equation can be written for the outgoing 

radiative power from each surface coarse cell “ i ”; 

( )4

, , ,

1
i

N M

out i e r i ji out j

jA

q k T dA k qσ
+

=

= + ϒ∑∫                          (5)              

where ,
r

A k represent the area and reflection coefficient of 

the surface cell. 

By writing (4) for all the volume cells and (5) for the surface 

cells, a set of algebraic equations is obtained. By using the 

temperature field of the previous iteration and the exchange 

factors, a system of equations for calculating the outgoing 

radiative heat power from each cell is achieved. After solving 

this system of equations and calculating the amount of 

outgoing radiative power from each cell, by using the 

definition of exchange factors, the incoming radiative power 

and radiative source term for each cell are obtained. The 

calculated radiative source term is in use for calculating a new 

temperature field in the CFD solver and doing the next 

iteration. This kind of hybrid system, as shown in Fig. 1, is 

continued until the limit of convergence for radiative source 

terms is achieved. 

IV. EXCHANGE FACTOR

In the previous section,the definition of exchange factors was 

introduced. for different states when a volume cell is 

considered as the destination of radiation and when a surface 

cell is considered as the destination of radiation. In this 

section, the equations of exchange factors are derived for 

different states , i.e. volume to volume, surface to volume, 

volume to surface and surface to surface, and for two- and 

three-dimensional configurations. 

To satisfy the radiative energy conservation, all the outgoing 

radiative power from each cell in the system should be 

absorbed or scattered in the volume cells or reach the surface 

cells in the system. Therefore, for each cell “ i ” as the source 

of radiation, it can be written that 

1

1
M N

ij

j
j i

+

=
≠

ϒ =∑                                                                           (6) 

This equation presents a good criterion for checking the 

accuracy of the calculation of the exchange factor. However, 

to decrease the effect of error in the calculation of exchange 

factors in the overall accuracy of the approach, the calculated 

exchange factors can be scaled before using in (4) and (5).   

A. Three-Dimensional Equations for  the  Exchange 

Factors 

For three-dimensional configuration based on the definition of 

the exchange factors, the following equations can be presented 

for exchange factors in different states: 

4

24

1 1
(4 )

4
i j

i i j

i

i j

V V ij i i i j
i j

V ijV Vi i i

V

T dV dV
ST dV

β β
α β σ

τ πβ σ
−

≠

 
 

ϒ =  
 
  

∫ ∫
∫

         (7) 

4

24

cos1 1
(4 )

4
i j

i i j

i

i j

V S ij i i i j

V ijV Ai i i

V

T dV dA
ST dV

β θ
α β σ

τ πβ σ
−

 
 

ϒ =  
 
  

∫ ∫
∫

(8) 

4

, ,24

, ,

cos1
( )

( )
i j

i j

i

j i

S V ij e i r i i i j

ijA Ve i r i i i

A

k k T dA dV
Sk k T dA

β θ
α σ

πσ
−ϒ = +

+
∫ ∫

∫

(9) 

4

, ,24

, ,

cos cos1
( )

( )
i j

i j

i

i j

S S ij e i r i i i j

ijA Ae i r i i i

A

k k T dA dA
Sk k T dA

θ θ
α σ

πσ
−ϒ = +

+
∫ ∫

∫

(10) 

where i , j , 
ij

ϒ , S , and θ  represent the source cell of 

radiation, the destination cell of radiation, the exchange factor, 

the center to center distance of the two radiative elements, the 

angle between the normal vector of the surface elements, and 

the center to center vector ( S
�

), respectively. 

ij
α is the attenuation of radiation between two cells and can be 

numerically calculated by using (2). 

 In (7) and (8), 
iV

τ is equal to 1
i iV V−− ϒ and inserts the effect 

of self-extinction in the calculation of the exchange factors. 

The self- extinction for the coarse volume cell is defined as: 

4

24

1
(4 )

4
i i

j i

i

i

i j

V V ij i i i j
V V

ijVi i i

V

T dV dV
ST dV

β β
α β σ

πβ σ
−

=
ϒ = ∫ ∫

∫
(11) 

B. Two-Dimensional Equations for the Exchange Factors 

Einstein [25] has presented a set of equations for calculating 

the direct exchange area used in the radiative zone method in 

two-dimensional configuration, when the  system has an infinte 

dimension in the third direction. Using same idea as Einstein, 

Bordbar and Hyppänen [26] have presented a set of equations 

for calculating the exchange factor based on above described 

definition of two-dimensional configurations. These equations 

are used in two-dimensional sample of this article.
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V. RESULTS AND DISCUSSION

A. 2D Simple Cubic 

As a simple two-dimensional case, the radiative exchange 

method is used to simulate radiative transfer in a rectangular 

with the dimensions 6 15m m× . A hot stream of carbon 

dioxide with the temperature of 1600K is comes into the space 

with a certain velocity profile, which is shown in Fig. 3. The 

side walls of the space are kept in the temperature of 800K, 

and the absorption and reflection coefficient of the wall is 0.5. 

Fig. 4 shows the distribution of the exchange factors from a 

volume cell located in the center of the space as the source of 

radiation to all other volume cells as the destination of 

radiation and from a surface cell located in the middle of side 

wall to all other cells. 

As Fig. 4 shows, for the conditions shown in Fig.3, most of the 

radiative power from the cells is in this case lost within the 

closest volume cells. 

The Temperature distribution in the gas obtained by the 

radiative exchange method has been compared with the DO, 

P1, and DTRM method in Fig. 5. As Fig. 5 shows, the

calculated temperature field with the radiative exchange 

method is in good conformity with those of other numerical 

radiation methods. 

B. 3D Simple Cubic 

As an example of using the radiative exchange method in the 

simulation of three-dimensional participating media, the 

radiation heat transfer of a simple cubic of carbon dioxide is 

analyzed. The gas with the temperature of 1600K and a certain 

velocity profile enters the cube from the bottom, and the side 

walls are in temperature of 800K. The cube is full of carbon 

dioxide as shown in Fig. 6. 

The radiative heat transfer within this sample is modeled with 

the radiative exchange method, and the result for the 

temperature profile of the gas is shown in Fig. 7. The coarse 

cells with the optical thickness of 0.35 were used for modeling 

this sample, while the minimum optical thickness of

integration elements used in the calculation of the exchange 

factor was 0.02. A good conformity is observed between the 

result of the radiative exchange method with the results of 

other numerical radiation methods. 

Fig. 3 Description of a two-dimensional sample

Fig. 4 Distribution of the exchange factors (a) from a volume cell 

located in the middle of geometry and (b) from a surface cell located 

in the middle of one of the side walls

Fig. 5 Comparison between the result of radiative exchange method 

with the results of other numerical methods for the temperature field 

of the gas;(a) Radiative Exchange Method,(b) Discrete Ordinate 

Method,(c)P1 Method,(d) Discrete Transfer Radiation Method

Fig. 6 Description of the 3D sample

Fig. 7 Comparison between the result of the radiative exchange 

method with the results of other numerical methods for the 

temperature field of the gas; (a) Radiative Exchange Method,(b) 

Discrete Ordinate Method,(c) P1 Method,(d) No radiation model 

used
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VI. CONCLUSION

The radiative exchange method was introduced as a 

generalized numerical method for the simulation of radiative 

heat transfer in absorbing, emitting, and isotropically 

scattering media surrounded by emitting, absorbing, and 

isotropically reflecting walls. The basis of the theory of 

radiative balance in this method was described. A new concept 

of exchange factors needed for the theory of this method was 

introduced and the related equations for three-dimensional 

case were reviewed. As two simple problems, the radiative 

exchange method was used to simulate radiative transfer in a 

two-dimensional rectangular and a three-dimensional cube 

problem. The result of using this method showed a good 

conformity with the results of using other numerical methods, 

such as DO, P1 and DTRM. 

Although the number of discrete points for defining the 

radiative source term within the domain is related to the size of 

the coarse cells, the accuracy of the whole approach is highly 

dependent on the accuracy of the exchange factor calculation. 

The accuracy of the exchange factor calculation depends on 

the optical thickness of the integration elements, and thus a 

separate study to drive suitable correlations for the exchange 

factors will be highly valuable and will have a great effect on 

the accuracy and the computational time of the approach. This 

is one of the activities of our group that may be reported in our 

next publications. 

The convergence of the method is very rapid, and even for 

large geometries the amount of source term is converged into 

the final value after a few iterations. 

From the physical point of view, this method has a good 

physical basis in considering radiative interaction between all 

points of the space, not just between neighbor cells. 

Using integration elements with very low optical thickness, the 

result of the method gets close to the solution of the integro-

differential equation of radiative balance.  

ACKNOWLEDGMENT

The authors would like to thank the support and 

encouragement provided by Foster Wheeler, Energia Oy, and 

Andritz Oy for this study. 

REFERENCES  

[1] R. Siegel, JR. Howell, Thermal radiation heat transfer, 3rd edition. 

Hemisphere : Taylor and Francis, 1992.  

[2] JR Howell “Application of Monte Carlo to heat transfer problems,” in 

Advances in heat transfer, vol. 5, JP Hartnett, TF Irvine, Ed. New York: 

Academic Press, 1968. 

[3] S.T. Flock, M.S. Patterson, B.C. Wilson, and D.R. Wyman, “Monte 

Carlo modeling of light propagation in highly scattering tissues—I: 

model predictions and comparison with diffusion theory,” IEEE Trans 

Med Eng, vol. 36, pp.1162–1168, 1989.  

[4] Y. Hasegawa, Y. Yamada, M. Tamura and Y. Nomura, “Monte Carlo 

simulation of light transmission through living tissues,” Appl. Opt., vol. 

30 , pp. 4515-4520, 1991. 

[5] N. G. Shah, New Method for the Computation of Radiation Heat 

Transfer in Combustion Chambers Ph.D. Thesis, London: Imperial 

College of Science and Technology, 1979. 

[6] F. C. Lockwood, and N. G. Shah, ‘‘A New Radiation Solution Method 

for Incorporation in General Combustion Prediction Procedures,’’ Proc. 

Eighteenth Symp. (Int.) Combustion, Pittsburgh, PA: The Combustion 

Institute, pp.1405–1413,1981. 

[7] J. B. Pessoa-Filho, and S. T. Thynell, ‘‘An Approximate Solution to the 

Radiative Transfer in Two-Dimensional Rectangular Enclosures,’’ 

ASME J. Heat Transfer, vol. 119, pp. 738–745, 1997. 

[8] S. Chandrasekhar. Radiative transfer. Clarendon Press, 1950. 

[9] B.G. Carlson and K.D. Lathrop. “Transport theory - The method of 

discrete ordinates.” in Computing in reactor Physics, New York: 

Gordon and Breach Ed., 1968. 

[10] W.A. Fiveland. “Three-dimensional radiative heat transfer solutions by 

the discrete-ordinates method.” J. Thermophysics, vol. 2, pp.309–316, 

1988. 

[11] W.A. Fiveland and A.S. Jamaluddin. “Three-dimensional spectral 

radiative heat transfer solutionsby the discrete ordinates method,” 

J.Thermophysics, vol. 5(3), pp. 335–339, 1991. 

[12] W.A. Fiveland and J.P. Jessee. “Comparison of discrete ordinates 

method formulations for radiative heat transfer in multidimensional 

geometries.” Journal of Thermophysics and Heat Transfer, vol. 9, pp. 

47–54, 1995. 

[13] J.S. Truelove. “Three-dimensional radition in absorbing-emitting-

scattering in using the discrete-ordinates approximation.” Journal of 

quantitative spectroscopy and radiative transfer, vol. 39, pp. 27–31, 

1988. 

[14] A.S. Jamaluddin and P.J. Smith. “Discrete-ordinates solution of 

radiation transfer equation in nonaxisymmetric cylindrical enclosures,” 

J. Thermophysics and Heat Transfer, vol. 6, pp. 242–245, 1992. 

[15] G. D. Raithby, and E. H. Chui, “A finite volume method for predicting 

radiant heat transfer in enclosures with participating media,”ASME 

Journal of Heat Transfer, vol. 112, pp. 415–423, 1990. 

[16] E. H. Chui, and G. D. Raithby, “Computation of radiant heat transfer on 

a nonorthogonal mesh using the finite volume method,” Numerical Heat 

Transfer Part B, vol. 23, pp. 269–288, 1993. 

[17] D. R. Rousse, and R. B. Baliga, “Formulation of a control-volume finite 

element method for radiative transfer in participating media,” Proc. 7th 

Intl. Conf. on Num. Methods in Thermal Problems, Stanford, 1991, pp. 

786–795. 

[18] D. R. Rousse, “Numerical predictions of two-dimensional conduction, 

convection and radiation heat transfer. I: formulation,” International 

Journal of Thermal Science, vol. 39, pp. 315–331, 2000. 

[19] H. C. Hottel, and E. S. Cohen, “Radiant Heat Exchange in a Gas-Filled 

Enclosure: Allowance for Nonuniformity of Gas Temperature”, AIChE 

J., vol. 4, pp.3-14, 1958. 

[20] H.C. Hottel and A. F. Sarofim, Radiatiae Transfer. New York: 

McCraw-Hill, 1967. 

[21] J. M. Goyhénéche and J. F. Sacadura, “The Zone Method: A New 

Explicit Matrix Relation to Calculate the Total Exchange Areas in 

Anisotropically Scattering Medium Bounded by Anisotropically 

Reflecting Walls” Journal of Heat Transfer, vol. 124, pp. 696-703, 

2002. 

[22] M.H. Bordbar, and T. Hyppänen, “Modeling of Radiation Heat Transfer 

in a Boiler Furnace,” Advanced Studies in Theoretical Physics, vol. 1, 

pp.571-584, 2007. 

[23] S. Maruyama,“Radiation Heat Transfer Between Arbitrary Three-

Dimensional Bodies with Specular and Diffuse Surfaces,” Numer. Heat 

Transfer, Part A, vol.24, pp.181-196, 1993. 

[24] S. Maruyama, and T. Aihara, “Radiation Heat Transfer of Arbitrary 

Three-Dimensional Absorbing, Emitting and Scattering Media and 

Specular and Diffuse Surfaces” ASME J. Heat Transfer, vol. 119, pp. 

129-136, 1997. 

[25] T. H. Einstein, “Radiant heat transfer to absorbing gases. enclosed 

between parallel flat plates with flow and conduction”, NASA TR, R-

154, 1963. 

[26] M.H. Bordbar and T. Hyppänen, “A New Numerical Method for 

Radiation in Participating Media in Combination with CFD Calculation 

for Other Modes of Heat Transfer”, Proceeding of  the 15th Conference 

of Iranian Society of Mechanical Engineering (ISME2007), May 15-19, 

Tehran, Iran, 2007. 

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:2, No:11, 2008 

809International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:2
, N

o:
11

, 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
79

8.
pd

f




