Search results for: Metal nanoparticle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 771

Search results for: Metal nanoparticle

441 Biosorption of Metal Ions from Sarcheshmeh Acid Mine Drainage by Immobilized Bacillus thuringiensis in a Fixed-Bed Column

Authors: V. Khosravi, F. D. Ardejani, A. Aryafar, M. Sedighi

Abstract:

Heavy metals have a damaging impact for the environment, animals and humans due to their extreme toxicity and removing them from wastewaters is a very important and interesting task in the field of water pollution control. Biosorption is a relatively new method for treatment of wastewaters and recovery of heavy metals. In this study, a continuous fixed bed study was carried out by using Bacillus thuringiensis as a biosorbent for the removal of Cu and Mn ions from Sarcheshmeh Acid Mine Drainage (AMD). The effect of operating parameters such as flow rate and bed height on the sorption characteristics of B. thuringiensis was investigated at pH 6.0 for each metal ion. The experimental results showed that the breakthrough time decreased with increasing flow rate and decreasing bed height. The data also indicated that the equilibrium uptake of both metals increased with decreasing flow rate and increasing bed height. BDST, Thomas, and Yoon–Nelson models were applied to experimental data to predict the breakthrough curves. All models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and bed height. In order to regenerate the adsorbent, an elution step was carried out with 1 M HCl and five adsorption-desorption cycles were carried out in continuous manner.

Keywords: Acid Mine Drainage, Bacillus thuringiensis, Biosorption, Cu and Mn ions, Fixed bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
440 Linear Stability of Convection in a Viscoelastic Nanofluid Layer

Authors: Long Jye Sheu

Abstract:

This paper presents a linear stability analysis of natural convection in a horizontal layer of a viscoelastic nanofluid. The Oldroyd B model was utilized to describe the rheological behavior of a viscoelastic nanofluid. The model used for the nanofluid incorporated the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was derived analytically. The effects of the Deborah number, retardation parameters, concentration Rayleigh number, Prandtl number, and Lewis number on the stability of the system were investigated. Results indicated that there was competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity which caused oscillatory rather than stationary convection to occur. Oscillatory instability is possible with both bottom- and top-heavy nanoparticle distributions. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.

Keywords: instability, viscoelastic, nanofluids, oscillatory, Brownian, thermophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
439 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 0m) and structured US–Y catalyst film (Si/Al = 8, thickness 230m) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-onalloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y, Zeolite ZSM-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150
438 Study on the Effect of Weight Percentage Variation and Size Variation of Magnesium Ferrosilicon Added, Gating System Design and Reaction Chamber Design on Inmold Process

Authors: A. Miss May Thu Zar Myint, B. Dr. Kay Thi Lwin

Abstract:

This research focuses on the effect of weight percentage variation and size variation of MgFeSi added, gating system design and reaction chamber design on inmold process. By using inmold process, well-known problem of fading is avoided because the liquid iron reacts with magnesium in the mold and not, as usual, in the ladle. During the pouring operation, liquid metal passes through the chamber containing the magnesium, where the reaction of the metal with magnesium proceeds in the absence of atmospheric oxygen [1].In this paper, the results of microstructural characteristic of ductile iron on this parameters are mentioned. The mechanisms of the inmold process are also described [2]. The data obtained from this research will assist in producing the vehicle parts and other machinery parts for different industrial zones and government industries and in transferring the technology to all industrial zones in Myanmar. Therefore, the inmold technology offers many advantages over traditional treatment methods both from a technical and environmental, as well as an economical point of view. The main objective of this research is to produce ductile iron castings in all industrial sectors in Myanmar more easily with lower costs. It will also assist the sharing of knowledge and experience related to the ductile iron production.

Keywords: ductile iron, inmold process, magnesiumtreatment, microstructural characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
437 Study the Effect of Ultrasonic Irradiation and Surfactant/Fe ions Weight Ratio on Morphology and Particle Size of Magnetite Nanoparticles Synthesised by co-precipitation for Medical Application

Authors: S.Saloomeh Azimipour Meibod, Peyman Pourafshary, Hamid Reza Madaah Hosseini

Abstract:

A biocompatible ferrofluid have been prepared by coprecipitation of FeCl2.4H2O and FeCl3.6H2O under ultrasonic irradiation and with NaOH as alkaline agent. Cystein was also used as capping agent in the solution. Magnetic properties of the produced ferrofluid were then determined by VSM test and magnetite nanoparticles were characterized by XRD and TEM techniques. The effect of surfactant to Fe ion weight ratio was also studied during this project by using two different amount of Dextran. Results showed the presence of a biocompatible superparamagnetic ferrofluid including magnetite nanoparticles with particle size ranging under 20 nm. The increase in the surfactant content results in the narrowing of the size distribution and reduction of the particle size and more solution stability.

Keywords: Biocompatibility, Ferrofluid, Nanoparticle, Sizedistribution, Ultrasonic irradiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
436 Assessment of Heavy Metal Concentrations in Tunas Caught from Lakshweep Islands, India

Authors: Mahesh Kumar Farejiya, Anil Kumar Dikshit

Abstract:

The toxic metal contamination and their biomagnification in marine fishes is a serious public health concern specially, in the coastal areas and the small islands. In the present study, concentration of toxic heavy metals like zinc (Zn), cadmium (Cd), lead (Pb), nickel (Ni), cobalt (Co), chromium (Cr) and mercury (Hg) were determined in the tissues of tunas (T. albacores) caught from the area near to Lakshdweep Islands. The heavy metals are one of the indicators for the marine water pollution. Geochemical weathering, industrialization, agriculture run off, fishing, shipping and oil spills are the major pollutants. The presence of heavy toxic metals in the near coastal water fishes at both western coast and eastern coast of India has been well established. The present study was conducted assuming that the distant island will not have the metals presence in a way it is at the near main land coast. However, our study shows that there is a significant amount of the toxic metals present in the tissues of tuna samples. The gill, lever and flash samples were collected in waters around Lakshdweep Islands. They were analyzed using ICP–AES for the toxic metals after microwave digestion. The concentrations of the toxic metals were found in all fish samples and the general trend of presence was in decreasing order as Zn > Al > Cd > Pb > Cr > Ni > Hg. The amount of metals was found to higher in fish having more weight.

Keywords: Biomagnifications, marine environment, toxic heavy metals, Tuna fish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
435 Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid

Authors: A. Ghafouri, A. Falavand Jozaei, M. Salari

Abstract:

In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.

Keywords: Nanofluid, Heat Transfer Enhancement, Square Enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
434 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
433 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

Authors: A. Soualem

Abstract:

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys.

The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restreint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Keywords: Deep drawing, Expansion, Restreint deep drawing, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
432 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: Nanoparticle, nanotube, oximes, precursor, supercritical CO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
431 Optimization of Process Parameters for Friction Stir Welding of Cast Alloy AA7075 by Taguchi Method

Authors: Dhairya Partap Sing, Vikram Singh, Sudhir Kumar

Abstract:

This investigation proposes Friction stir welding technique to solve the fusion welding problems. Objectives of this investigation are fabrication of AA7075-10%wt. Silicon carbide (SiC) aluminum metal matrix composite and optimization of optimal process parameters of friction stir welded AA7075-10%wt. SiC Composites. Composites were prepared by the mechanical stir casting process. Experiments were performed with four process parameters such as tool rotational speed, weld speed, axial force and tool geometry considering three levels of each. The quality characteristics considered is joint efficiency (JE). The welding experiments were conducted using L27 orthogonal array. An orthogonal array and design of experiments were used to give best possible welding parameters that give optimal JE. The fabricated welded joints using rotational speed of 1500 rpm, welding speed (1.3 mm/sec), axial force (7 k/n) of and tool geometry (square) give best possible results. Experimental result reveals that the tool rotation speed, welding speed and axial force are the significant process parameters affecting the welding performance. The predicted optimal value of percentage JE is 95.621. The confirmation tests also have been done for verifying the results.

Keywords: Metal matrix composite, axial force, joint efficiency, rotational speed, traverse speed, tool geometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
430 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
429 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: Demulsifier, dehydration, silicon dioxide, nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
428 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
427 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
426 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Authors: K. S. Hui, K. N. Hui, Seong Kon Lee

Abstract:

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Keywords: Metal ions, waste water, methane, volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
425 Synthesis, Structural, and Dielectric Characterization of Cadmium Oxide Nanoparticles

Authors: Suresh Sagadevan, A. Veeralakshmi

Abstract:

Cadmium oxide (CdO) nanoparticles have been prepared by chemical coprecipitation method. The synthesized nanoparticles were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV analysis, and dielectric studies. The crystalline nature and particle size of the CdO nanoparticles were characterized by Powder X-ray diffraction analysis (XRD). The morphology of prepared CdO nanoparticles was studied by scanning electron microscopy. The particle size was studied using the transmission electron microscopy (TEM).The optical properties were obtained from UV-Vis absorption spectrum. The dielectric properties of CdO nanoparticles were studied in the frequency range of 50 Hz–5 MHz at different temperatures. The frequency dependence of the dielectric constant and dielectric loss is found to decrease with an increase in the frequency at different temperatures. The ac conductivity of CdO nanoparticle has been studied.

Keywords: Cadmium Oxide (CdO), XRD, SEM, Dielectric constant and Dielectric loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
424 Health Risk Assessment of Heavy Metals in the Contaminated and Uncontaminated Soils

Authors: S. A. Nta

Abstract:

Application of health risk assessment methods is important in order to comprehend the risk of human exposure to heavy metals and other dangerous pollutants. Four soil samples were collected at distances of 10, 20, 30 m and the control 100 m away from the dump site at depths of 0.3, 0.6 and 0.9 m. The collected soil samples were examined for Zn, Cu, Pb, Cd and Ni using standard methods. The health risks via the main pathways of human exposure to heavy metal were detected using relevant standard equations. Hazard quotient was calculated to determine non-carcinogenic health risk for each individual heavy metal. Life time cancer risk was calculated to determine the cumulative life cancer rating for each exposure pathway. The estimated health risk values for adults and children were generally lower than the reference dose. The calculated hazard quotient for the ingestion, inhalation and dermal contact pathways were less than unity. This means that there is no detrimental concern to the health on human exposure to heavy metals in contaminated soil. The life time cancer risk 5.4 × 10-2 was higher than the acceptable threshold value of 1 × 10-4 which is reflected to have significant health effects on human exposure to heavy metals in contaminated soil. Good hygienic practices are recommended to ease the potential risk to children and adult who are exposed to contaminated soils. Also, the local authorities should be made aware of such health risks for the purpose of planning the management strategy accordingly.

Keywords: Health risk assessment, pollution, heavy metals, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
423 Arsenic Mobility from Mining Tailings of Monte San Nicolas to Presa de Mata in Guanajuato, Mexico

Authors: I. Cano-Aguilera, B. E. Rubio-Campos, G. De la Rosa, A. F. Aguilera-Alvarado

Abstract:

Mining tailings represent a generating source of rich heavy metal material with a potential danger the public health and the environment, since these metals, under certain conditions, can leach and contaminate aqueous systems that serve like supplying potable water sources. The strategy for this work is based on the observation, experimentation and the simulation that can be obtained by binding real answers of the hydrodynamic behavior of metals leached from mining tailings, and the applied mathematics that provides the logical structure to decipher the individual effects of the general physicochemical phenomenon. The case of study presented herein focuses on mining tailings deposits located in Monte San Nicolas, Guanajuato, Mexico, an abandoned mine. This was considered the contamination source that under certain physicochemical conditions can favor the metal leaching, and its transport towards aqueous systems. In addition, the cartography, meteorology, geology and the hydrodynamics and hydrological characteristics of the place, will be helpful in determining the way and the time in which these systems can interact. Preliminary results demonstrated that arsenic presents a great mobility, since this one was identified in several superficial aqueous systems of the micro watershed, as well as in sediments in concentrations that exceed the established maximum limits in the official norms. Also variations in pH and potential oxide-reduction were registered, conditions that favor the presence of different species from this element its solubility and therefore its mobility.

Keywords: Arsenic, mining tailings, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
422 Microwave Assisted Solvent-Free Catalytic Transesterification of Glycerol to Glycerol Carbonate

Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua, Joe Shen Heng

Abstract:

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varying grades of glycerol, i.e. 70%, 86% and 99% purity, that is obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Amidst the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demonstrated itself as an energy efficient route by achieving 94.2% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Keywords: Biodiesel, glycerol, glycerol carbonate, microwave irradiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
421 Leatherback Turtle (Dermochelys coriacea) after Incubation Eggshell in Andaman Sea, Thailand Study: Microanalysis on Ultrastructure and Elemental Composition

Authors: M. Areekijseree, M. Pumipaiboon, S. Nuamsukon, K. Kittiwattanawong, C. Thongchai, S. Sikiwat, T. Chuen-Im

Abstract:

There are few studies on eggshell of leatherback turtle which is endangered species in Thailand. This study was focusing on the ultrastructure and elemental composition of leatherback turtle eggshells collected from Andaman Sea Shore, Thailand during the nesting season using scanning electron microscope (SEM). Three eggshell layers of leatherback turtle; the outer cuticle layer or calcareous layer, the middle layer or middle multistrata layer and the inner fibrous layer were recognized. The outer calcareous layer was thick and porosity which consisted of loose nodular units of various crystal shapes and sizes. The loose attachment between these units resulted in numerous spaces and openings. The middle layer was compact thick with several multistrata and contained numerous openings connecting to both outer cuticle layer and inner fibrous layer. The inner fibrous layer was compact and thin, and composed of numerous reticular fibers. Energy dispersive X-ray microanalysis detector revealed energy spectrum of X-rays character emitted from all elements on each layer. The percentages of all elements were found in the following order: carbon (C) > oxygen (O) > calcium (Ca) > sulfur (S) > potassium (K) > aluminum (Al) > iodine (I) > silicon (Si) > chlorine (Cl) > sodium (Na) > fluorine (F) > phosphorus (P) > magnesium (Mg). Each layer consisted of high percentage of CaCO3 (approximately 98%) implying that it was essential for turtle embryonic development. A significant difference was found in the percentages of Ca and Mo in the 3layers. Moreover, transition metal, metal and toxic non-metal contaminations were found in leatherback turtle eggshell samples. These were palladium (Pd), molybdenum (Mo), copper (Cu), aluminum (Al), lead (Pb), and bromine (Br). The contamination elements were seen in the outer layers except for Mo. All elements were readily observed and mapped using Smiling program. X-ray images which mapped the location of all elements were showed. Calcium containing in the eggshell appeared in high contents and was widely distributing in clusters of the outer cuticle layer to form CaCO3 structure. Moreover, the accumulation of Na and Cl was observed to form NaCl which was widely distributing in 3 eggshell layers. The results from this study would be valuable on assessing the emergent success in this endangered species.

Keywords: Leatherback turtle (Dermochelys coriacea), SEM (SEI/EDX), turtle eggshell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
420 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3947
419 Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template

Authors: Asep Bayu Dani Nandiyanto, Asep Suhendi, Yutaka Kisakibaru, Takashi Ogi, Kikuo Okuyama

Abstract:

An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.

Keywords: Porous structure film; ATO particle; Ultra-low refractive index; vertical drop method; Low-density material;

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
418 Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity

Authors: Bouchmel Mliki, Chaouki Ali, Mohamed Ammar Abbassi

Abstract:

In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (Ra = 103−106), nanoparticle volume concentration (f = 0-0.04) and Hartmann number (Ha = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at Ra = 106 more than other Raleigh numbers, as the least effect is observed at Ra = 103. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers.

Keywords: Heat transfer, linearly/sinusoidally heated, Lattice Boltzmann Method, natural convection, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
417 Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Krasimir I. Ivanov, Huu Q. Lee

Abstract:

A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals in the sunflower plant and the quality of the sunflower oil (heavy metals and fatty acid composition) were determined. The tested organic amendments significantly influenced the uptake of Pb, Zn and Cd by the sunflower plant. The incorporation of 40 t/decare of compost and 20 t/decare of vermicompost to the soil led to an increase in the ability of the sunflower to take up and accumulate Cd, Pb and Zn. Sunflower can be subjected to the accumulators of Pb, Zn and Cd and can be successfully used for phytoremediation of contaminated soils with heavy metals. The 40 t/daa compost treatment led to a decrease in heavy metal content in sunflower oil to below the regulated limits. Oil content and fatty acids composition were affected by compost and vermicompost amendment treatments. Adding compost and vermicompost increased the oil content in the seeds. Adding organic amendments increased the content of stearic, palmitoleic and oleic acids, and reduced the content of palmitic and gadoleic acids in sunflower oil. The possibility of further industrial processing of seeds to oil and use of the obtained oil will make sunflowers economically interesting crops for farmers of phytoremediation technology.

Keywords: Heavy metals, organic amendments, phytoremediation, sunflower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3887
416 Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film

Authors: S.Solaymani, T.Ghodselahi, N.B.Nezafat, H.Zahrabi, A.Gelali

Abstract:

The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.

Keywords: Atomic force microscopy, Fast Fourier transform, Power spectral density, RBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
415 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar

Abstract:

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts grey relational analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole. 

Keywords: Metal matrix composite, Drilling, Optimization, step drill, Surface roughness, burr height, hole diameter error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
414 Hybrid Recovery of Copper and Silver from PV Ribbon and Ag Finger of EOL Solar Panels

Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa

Abstract:

Recovery of pure copper and silver from end-of-life photovoltaic (PV) panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500 °C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from PV ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.

Keywords: Electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
413 Very High Speed Data Driven Dynamic NAND Gate at 22nm High K Metal Gate Strained Silicon Technology Node

Authors: Shobha Sharma, Amita Dev

Abstract:

Data driven dynamic logic is the high speed dynamic circuit with low area. The clock of the dynamic circuit is removed and data drives the circuit instead of clock for precharging purpose. This data driven dynamic nand gate is given static forward substrate biasing of Vsupply/2 as well as the substrate bias is connected to the input data, resulting in dynamic substrate bias. The dynamic substrate bias gives the shortest propagation delay with a penalty on the power dissipation. Propagation delay is reduced by 77.8% compared to the normal reverse substrate bias Data driven dynamic nand. Also dynamic substrate biased D3nand’s propagation delay is reduced by 31.26% compared to data driven dynamic nand gate with static forward substrate biasing of Vdd/2. This data driven dynamic nand gate with dynamic body biasing gives us the highest speed with no area penalty and finds its applications where power penalty is acceptable. Also combination of Dynamic and static Forward body bias can be used with reduced propagation delay compared to static forward biased circuit and with comparable increase in an average power. The simulations were done on hspice simulator with 22nm High-k metal gate strained Si technology HP models of Arizona State University, USA.

Keywords: Data driven nand gate, dynamic substrate biasing, nand gate, static substrate biasing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
412 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: Bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990