Search results for: Fuel cell power generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4756

Search results for: Fuel cell power generation

4426 A New Approach to Design Policies for the Adoption of Alternative Fuel-Technology Powertrains

Authors: Reza Fazeli, Vitor Leal, Jorge Pinho de Sousa

Abstract:

Planning the transition period for the adoption of alternative fuel-technology powertrains is a challenging task that requires sophisticated analysis tools. In this study, a system dynamic approach was applied to analyze the bi-directional interaction between the development of the refueling station network and vehicle sales. Besides, the developed model was used to estimate the transition cost to reach a predefined target (share of alternative fuel vehicles) in different scenarios. Several scenarios have been analyzed to investigate the effectiveness and cost of incentives on the initial price of vehicles, and on the evolution of fuel and refueling stations. Obtained results show that a combined set of incentives will be more effective than just a single specific type of incentives.

Keywords: adoption of Alternative Fuel Vehicles, System Dynamic Analysis, Plug-in Hybrid Vehicles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
4425 ATC in Competitive Electricity Market Using TCSC

Authors: S. K. Gupta, Richa Bansal

Abstract:

In a deregulated power system structure, power producers and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their available transfer capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.

Keywords: Available Transfer Capability, FACTS devices, Power Transfer Distribution Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
4424 Wind Farm Modeling for Steady State and Dynamic Analysis

Authors: G.Kabashi, K.Kadriu, A.Gashi, S.Kabashi, G, Pula, V.Komoni

Abstract:

This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.

Keywords: Power System transients, PSS/E dynamic simulationDouble-fed Induction Generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4584
4423 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown.

An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
4422 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters

Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud

Abstract:

Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.

Keywords: Energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
4421 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: Waste oil, pyrolysis oil, Y zeolite, gasoline, diesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
4420 Hydrogen and Diesel Combustion on a Single Cylinder Four Stroke Diesel Engine in Dual Fuel mode with Varying Injection Strategies

Authors: Probir Kumar Bose, Rahul Banerjee, Madhujit Deb

Abstract:

The present energy situation and the concerns about global warming has stimulated active research interest in non-petroleum, carbon free compounds and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. Recently more and more stringent environmental regulations being enacted in the USA and Europe have led to the research and development activities on clean alternative fuels. Among the gaseous fuels hydrogen is considered to be one of the clean alternative fuel. Hydrogen is an interesting candidate for future internal combustion engine based power trains. In this experimental investigation, the performance and combustion analysis were carried out on a direct injection (DI) diesel engine using hydrogen with diesel following the TMI(Time Manifold Injection) technique at different injection timings of 10 degree,45 degree and 80 degree ATDC using an electronic control unit (ECU) and injection durations were controlled. Further, the tests have been carried out at a constant speed of 1500rpm at different load conditions and it can be observed that brake thermal efficiency increases with increase in load conditions with a maximum gain of 15% at full load conditions during all injection strategies of hydrogen. It was also observed that with the increase in hydrogen energy share BSEC started reducing and it reduced to a maximum of 9% as compared to baseline diesel at 10deg ATDC injection during maximum injection proving the exceptional combustion properties of hydrogen.

Keywords: Hydrogen, performance, combustion, alternative fuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3381
4419 Performance, Emission and Combustion Characteristics of Direct Injection Diesel Engine Running on Rice Bran Oil / Diesel Fuel Blend

Authors: B.K.Venkanna, C. Venkataramana Reddy, Swati B Wadawadagi

Abstract:

Triglycerides and their derivatives are considered as viable alternatives for diesel fuels. Rice bran oil is used as diesel fuel. Highly viscous rice bran oil can be reduced by blending it with diesel fuel. The present research is aimed to investigate experimentally the performance, exhaust emission and combustion characteristics of a direct injection (DI) diesel engine, typically used in agricultural sector, over the entire load range when fuelled with rice bran oil and diesel fuel blends, RB10 (10% rice bran oil + 90% diesel fuel) to RB50. The performance, emission and combustion parameters of RB20 were found to be very close to neat diesel fuel (ND). The injector opening pressure (IOP) undoubtedly is of prime importance in diesel engine operation. Performance, emission and combustion characteristics with RB30 at enhanced IOPs are better than ND. Improved premixed heat release rate were noticed with RB30 when the IOP is enhanced.

Keywords: Rice bran oil, injector opening pressure, performance, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
4418 The Pack-Bed Sphere Liquid Porous Burner

Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla

Abstract:

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

Keywords: Liquid fuel, Porous burner, Temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
4417 Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet

Authors: Mashayekh Amir Shahriar, Akhlaghi Morteza, Rajaee Hajar, Khani Mohammad Reza, Shokri Babak

Abstract:

A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated and characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.

Keywords: Atmospheric Pressure Plasma Jet (APPJ), Plasma Medicine, Cancer cell treatment, leukemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
4416 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: Smart grids, wind turbine, modeling, renewable energy, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
4415 Low Sulfur Diesel Like Fuel Oil from Quick Remediation Process of Waste Oil Sludge

Authors: Isam A. H. Al Zubaidi

Abstract:

Low sulfur diesel like fuel oil was produced from a quick remediation process of waste oil sludge (WOS). This quick process will reduce the volume of the WOS in petroleum refineries as well as oil fields by transferring the waste to more beneficial product. The practice includes mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixed for 10 minutes using a bench-type overhead stirrer, and followed by the filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of WOS was decreased by about 60% by mass. This means that about 60% of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black. The sulfur content was increased also. This requires another process to reduce the sulfur content of resulting light fuel. A desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl2 activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.

Keywords: Oil sludge, diesel fuel, blending process, filtration process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285
4414 Design of a Robust Controller for AGC with Combined Intelligence Techniques

Authors: R. N. Patel, S. K. Sinha, R. Prasad

Abstract:

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
4413 Stochastic Programming Model for Power Generation

Authors: Takayuki Shiina

Abstract:

We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.

Keywords: electric power capacity expansion problem, integerprogramming, L-shaped method, stochastic programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
4412 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells

Authors: Yanqin Chen, Chao Jiang, Chongdu Cho

Abstract:

This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.

Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
4411 Analysis of Effect of Pre-Logic Factoring on Cell Based Combinatorial Logic Synthesis

Authors: Padmanabhan Balasubramanian, Bashetty Raghavendra

Abstract:

In this paper, an analysis is presented, which demonstrates the effect pre-logic factoring could have on an automated combinational logic synthesis process succeeding it. The impact of pre-logic factoring for some arbitrary combinatorial circuits synthesized within a FPGA based logic design environment has been analyzed previously. This paper explores a similar effect, but with the non-regenerative logic synthesized using elements of a commercial standard cell library. On an overall basis, the results obtained pertaining to the analysis on a variety of MCNC/IWLS combinational logic benchmark circuits indicate that pre-logic factoring has the potential to facilitate simultaneous power, delay and area optimized synthesis solutions in many cases.

Keywords: Algebraic factoring, Combinational logic synthesis, Standard cells, Low power, Delay optimization, Area reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
4410 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.

Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
4409 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha

Abstract:

Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.

Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3402
4408 A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference

Authors: Azhar Rauf, Sareer Badshah, Shah Khusro

Abstract:

This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.

Keywords: Fine Grained Security, Data Accessibility, Inference, Row, Cell, Column Level Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
4407 Reliability Assessment of Bangladesh Power System Using Recursive Algorithm

Authors: Nahid-Al-Masood, Jubaer Ahmed, Amina Hasan Abedin, S. R. Deeba, Faeza Hafiz, Mahmuda Begum

Abstract:

An electric utility-s main concern is to plan, design, operate and maintain its power supply to provide an acceptable level of reliability to its users. This clearly requires that standards of reliability be specified and used in all three sectors of the power system, i.e., generation, transmission and distribution. That is why reliability of a power system is always a major concern to power system planners. This paper presents the reliability analysis of Bangladesh Power System (BPS). Reliability index, loss of load probability (LOLP) of BPS is evaluated using recursive algorithm and considering no de-rated states of generators. BPS has sixty one generators and a total installed capacity of 5275 MW. The maximum demand of BPS is about 5000 MW. The relevant data of the generators and hourly load profiles are collected from the National Load Dispatch Center (NLDC) of Bangladesh and reliability index 'LOLP' is assessed for the period of last ten years.

Keywords: Recursive algorithm, LOLP, forced outage rate, cumulative probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
4406 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen

Abstract:

In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.

Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
4405 Integration of Resistive Switching Memory Cell with Vertical Nanowire Transistor

Authors: Xiang Li, Zhixian Chen, Zheng Fang, Aashit Kamath, Xinpeng Wang, Navab Singh, Guo-Qiang Lo, Dim-Lee Kwong

Abstract:

We integrate TiN/Ni/HfO2/Si RRAM cell with a vertical gate-all-around (GAA) nanowire transistor to achieve compact 4F2 footprint in a 1T1R configuration. The tip of the Si nanowire (source of the transistor) serves as bottom electrode of the memory cell. Fabricated devices with nanowire diameter ~ 50nm demonstrate ultra-low current/power switching; unipolar switching with 10μA/30μW SET and 20μA/30μW RESET and bipolar switching with 20nA/85nW SET and 0.2nA/0.7nW RESET. Further, the switching current is found to scale with nanowire diameter making the architecture promising for future scaling.

Keywords: RRAM, 1T1R, gate-all-around FET, nanowire FET, vertical MOSFETs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
4404 High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

Authors: Reza Faghih Mirzaee, Mohammad Hossein Moaiyeri, Keivan Navi

Abstract:

In this paper we present two novel 1-bit full adder cells in dynamic logic style. NP-CMOS (Zipper) and Multi-Output structures are used to design the adder blocks. Characteristic of dynamic logic leads to higher speeds than the other standard static full adder cells. Using HSpice and 0.18┬Ám CMOS technology exhibits a significant decrease in the cell delay which can result in a considerable reduction in the power-delay product (PDP). The PDP of Multi-Output design at 1.8v power supply is around 0.15 femto joule that is 5% lower than conventional dynamic full adder cell and at least 21% lower than other static full adders.

Keywords: Bridge Style, Dynamic Logic, Full Adder, HighSpeed, Multi Output, NP-CMOS, Zipper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
4403 Attractiveness of Cafeteria Systems as Viewed by Generation Z

Authors: Joanna Nieżurawska, Hanna Karaszewska, Anna Dziadkiewicz

Abstract:

Contemporary conditions force companies to constantly implement changes and improvements, which is connected with plasticization of their activity in all spheres. Cafeteria systems are a good example of flexible remuneration systems. Cafeteria systems are well-known and often used in the United States, Great Britain and in Western Europe. In Poland, they are hardly ever used and greater flexibility in remuneration packages refers mainly to senior managers and executives. The main aim of this article is to research the attractiveness of the cafeteria system as viewed by generation Z. The additional aim of the article is to prioritize using the importance index of particular types of cafeteria systems from the generation Z’s perspective, as well as to identify the factors which determine the development of cafeteria systems in Poland. The research was conducted in June 2015 among 185 young employees (generation Z). The paper presents some of the results.

Keywords: Cafeteria, generation X, generation Y, generation Z, flexible remuneration systems, plasticization of remuneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
4402 Next Generation Networks and Their Relation with Ad-hoc Networks

Authors: Hamid Barati, Ali Movaghar, Ali Barati, Arash Azizi Mazreah , Ehsan Shahsavari Gogheri, Faranak Mohsenzadeh

Abstract:

The communication networks development and advancement during two last decades has been toward a single goal and that is gradual change from circuit-switched networks to packed switched ones. Today a lot of networks operates are trying to transform the public telephone networks to multipurpose packed switch. This new achievement is generally called "next generation networks". In fact, the next generation networks enable the operators to transfer every kind of services (sound, data and video) on a network. First, in this report the definition, characteristics and next generation networks services and then ad-hoc networks role in the next generation networks are studied.

Keywords: NGNs services, Ad-hoc Networks, NGN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
4401 Wind Energy Status in Turkey

Authors: Mustafa Engin Başoğlu, Bekir Çakir

Abstract:

Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.

Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
4400 Impact of Combustion of Water in Fuel on Polycyclic Aromatic Hydrocarbon (Pah-s)Precursors- Formation

Authors: Abdulaziz H. El-Sinawi

Abstract:

Some of the polycyclic aromatic hydrocarbons (PAHs) are the strongest known carcinogens compounds; the majority of them are mostly produced by the incomplete combustion of fossil fuels; Motor vehicles are a significant source of polycyclic aromatic hydrocarbon (PAH) where diesel emission is one of the main sources of such compounds available in the ambient air. There is a big concern about the increasing concentration of PAHs in the environment. Researchers are trying to explore optimal methods to reduce those pollutants and improve the quality of air. Water blended fuel is one of the possible approaches to reduce emission of PAHs from the combustion of diesel in urban and domestic vehicles. In this work a modeling study was conducted using CHEMKIN-PRO software to simulate spray combustion at similar diesel engine conditions. Surrogate fuel of (80 % n-heptane and 20 % toluene) was used due to detailed kinetic and thermodynamic data needed for modeling is available for this kind of fuel but not available for diesel. An emulsified fuel with 3, 5, 8, 10 and 20 % water by volume is used as an engine feed for this study. The modeling results show that water has a significant effect on reducing engine soot and PAHs precursors formation up to certain extent.

Keywords: Polycyclic Aromatic Hydrocarbons (PAHs), DieselEngine, Emission, Surrogate Fuel, Emulsified Fuel, Soot precursors, Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
4399 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle

Authors: Khaled M. Khader, Mamdouh I. Elimy

Abstract:

Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.

Keywords: Composite material, crank-rocker mechanism, transmission angle, design techniques, power saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
4398 Use of Magnesium as a Renewable Energy Source

Authors: Rafayel K. Kostanyan

Abstract:

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Keywords: Magnesium, power generation, production, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
4397 Minimization of Power Loss in Distribution Networks by Different Techniques

Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt

Abstract:

Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.

Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6198