
Abstract—Some of the polycyclic aromatic hydrocarbons (PAHs)
are the strongest known carcinogens compounds; the majority of
them are mostly produced by the incomplete combustion of  fossil
fuels; Motor vehicles are a significant source of polycyclic aromatic
hydrocarbon (PAH) where diesel emission is one of the main sources
of such compounds available in the ambient air. There is a big
concern about the increasing concentration of PAHs in the
environment. Researchers are trying to explore optimal methods to
reduce those pollutants and improve the quality of air. Water blended
fuel is one of the possible approaches to reduce emission of PAHs
from the combustion of diesel in urban and domestic vehicles. In this
work a modeling study was conducted using CHEMKIN-PRO
software to simulate spray combustion at similar diesel engine
conditions. Surrogate fuel of (80 % n-heptane and 20 % toluene) was
used due to detailed kinetic and thermodynamic data needed for
modeling is available for this kind of fuel but not available for diesel.
An emulsified fuel with 3, 5, 8, 10 and 20 % water by volume is used
as an engine feed for this study. The modeling results show that water
has a significant effect on reducing engine soot and PAHs precursors
formation up to certain extent.

Keywords—Polycyclic Aromatic Hydrocarbons (PAHs), Diesel
Engine, Emission, Surrogate Fuel, Emulsified Fuel, Soot precursors,
Combustion

I. INTRODUCTION
IESEL engine exhaust emissions contain hundreds of
chemical compounds, which are partly emitted in the

gaseous phase and partly in the particulate phase of the
exhaust. The major gaseous products of combustion are carbon
dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide,
oxygen, nitrogen, water vapor;  and hydrocarbons and their
derivatives. Benzene and toluene are present in the lower
weight percent range in the gaseous part of the hydrocarbon
fractions. Other gaseous exhaust components are low-relative-
molecular-mass polycyclic aromatic hydrocarbons (PAHs).
Some of the compositions of diesel exhaust gas are shown in
Table 1 [1]–[3].

Diesel engine exhausts are mainly emitted from motor
vehicles, stationary, railway locomotive, and ship diesel
engines. The emissions from diesel motor vehicles have been
well described, but the individual results are often not
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comparable owing to differences in parameters such as driving
cycle, engine type, and fuel composition.[2]–[4].

Increasing fuel aromaticity also increases particle emissions.
PAHs and oxygenated PAHs from diesel and spark-ignition
engines are qualitatively similar [4], [5]. Oxygenated and
nitrated PAHs are emitted in the low microgram per kilometer
range [5], [6]. PAHs emissions increase with increasing load
and temperature and with the age of the engine, probably
owing to increased consumption of lubricating oil [7], [8]. The
aromaticity and volatility of the fuel are directly correlated
with the emission of PAHs [9], [10]. Malfunction of engine
devices, especially the fuel injection system, increases the
emission of the main exhaust components.

II. LITERATURE REVIEW
Very few experimental studies have been made to

investigate the effect of water on the formation of polycyclic
aromatic hydrocarbons. Emulsified fuels were found to give
lower amounts of polycyclic aromatic hydrocarbons in the

flame, as well as reduce atmospheric emissions. However
unsubstantial attempts have been made to modeling these
results and explain the theory behind this reduction.

Schlitt and Exner [13] have compared the output of two
combustion processes in which  water-in-diesel emulsion and
humidified intake air techniques were used. Both techniques
were effective in reducing NOX emission rate; however soot
level was only reduced with emulsion.

Various water to fuel ratios were used in the combustion
studies utilizing water in fuel technique . Most of the
investigators focused on the effect of adding 5–10% water to
fuel whereas higher ratios of water contents are rarely
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TABLE I
COMPOSITIONS OF LIGHT-DUTY DIESEL ENGINE EXHAUST.

ADAPTED FROM [11, 12]
Component Concentration (% by weight)
Carbon dioxide 7.1
Water vapor 2.6
Oxygen 15.0
Nitrogen 75.2
Carbon Monoxide 0.03
Hydrocarbons 0.0007
Nitrogen oxides 0.03
Hydrogen 0.002
Sulfur dioxide 0.01
Sulfates 0.00016
Aldehydes 0.0014
Ammonia 0.00005
Particulates 0.006

World Academy of Science, Engineering and Technology
International Journal of Chemical and Molecular Engineering

 Vol:5, No:8, 2011 

678International Scholarly and Scientific Research & Innovation 5(8) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
he

m
ic

al
 a

nd
 M

ol
ec

ul
ar

 E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
8,

 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
88

5.
pd

f



discussed and needs to be thoroughly reviewed and
investigated. It has been claimed that the optimum water
content for NOX and PM reduction is between 10 and 20%
[14], [15].

Samec et al. [17] studied the effect of 10 and 20% water-in-
diesel on emission reduction levels of NOX, hydrocarbons and
soot, as well as on the specific fuel consumption. The values
obtained, compared to those of neat diesel show considerable
reduction in both hydrocarbons and soot at 10 % water;
however the 20 % water content did not significantly reduce
NOX or any of the other pollutants.

Several experimental investigations were carried out on
industrial furnaces and external combustion systems [18]–[21],
diesel engines [15], [16], [18], [25], [26] and gas turbines [27],
[28]. All of these demonstrated the propitious aspects of using
alternative and emulsified fuels; however, variations between
the results from one set of experiments to another were
interpreted. These variations encouraged researchers to do
further investigation to clarify the results and closely
understand the emulsion combustion process.

Many researchers focused on the secondary atomization and
emulsified fuel penetration concepts. In the past Zhou and
Thorp [30] have presented theoretical and experimental studies
on the differences between pure and emulsified fuel
atomization and discussed the effect of emulsified fuel
atomization on fuel combustion process. They measured the
spray tip penetration and spray angle of emulsion spray in a
noncombusting bomb that simulated the combustion chamber
of a marine diesel engine (Ruston 6APC) by using a high-
speed camera with a micro-lens. Compared to the pure fuel,
the emulsified fuel has longer spray tip penetration and wider
spray angle. Also emulsion with water content of 5-20%,
shows gradual increase in tip penetration as the water
percentage increases. The number of countable droplets of
emulsion fuel was much greater than that of pure fuel, and
that’s due to the higher total surface area of emulsion fuel
droplets [31, 32, 33]. Recent studies [34] shows that the  mean
size of the droplets increases in accordance with the mixing
ratio of the biodiesel because the viscosity and surface tension
of the biodiesel are higher than those of the conventional
diesel fuel. As the ratio of the biodiesel becomes higher,
hydrocarbon and CO emissions are decreased, whereas the
NOx emission increases because of oxygen in the biodiesel and
a shorter ignition delay, which presents a controversial mean
toward investigating the  hydrocarbon emission trend when
water is added to fuel.  Also the effect of direct water injection
on decreasing flame temperature was objectively examined
and investigated by Tamjima and Takasaki [35] using two
simulation codes of different combustion models and by flame
temperature measurement in a visual engine based on the two-
colour method using special camera type, both results were in
good agreement with each other and insured a significant
decrease in temperature so that NOx reduction could be clearly
explained. Moreover, it was found that direct water injection
could result in more complicated combustion process than

expected since preceding water vapor greatly affected the
propagation and the air entrainment of the fuel spray.

Suh, Roh and Lee [36] expressed that the spray tip
penetration of biodiesel fuel was similar to that of diesel. The
atomization characteristics of biodiesel show that it has higher
Sauter mean diameter and lower spray velocity than
conventional diesel fuel due to high viscosity and surface
tension. The peak combustion pressures of diesel and blending
fuel increased with advanced injection timing and the
combustion pressure of biodiesel fuel is higher than that of
diesel fuel. It was found that the performed spray injection
enhanced the combustion characteristics of biodiesel fuel
caused by different physical properties of the fuel.

Sung Lin and Ping Lin [37] are recently investigate the
emulsified bio diesel spray characteristics on direct injection
engine emission and deposit formation. Their experimental
results indicated that using emulsified biodiesel can
significantly improve the fossil diesel emissions. Some
potential deposit were observed, as well, during the laboratory
research stage, and they succeeded in increasing the injection
spray pressure by 5–10% while using 15% of water in fuel.

The approach described here aims at providing a model for
emulsion spray combustion of several water-in-fuel ratios on
emission criteria and mainly on the PAH formation. The
modeling procedure conducted through CHEMKIN code
modeling software and the fuel used is a surrogate fuel consists
of  80% n-heptane and 20% toluene which represents the
conventional diesel fuel.

III.MODELING APPROACH RESULTS AND DISCUSION
C3H3 is considered as one of the most important precursors

to form PAHs molecules; hence two molecules of C3H3 can
form the first benzene ring (C6H6) [38] after passing through
the recombination and rearrangement as shown in the
mechanism illustrated in figure 1 below. .

C 3H 3 + C 3H 3

H 2C

C

C H

C H

C

H 2C

Fig. 1 Formation path of the first aromatic ring via the combination
of two Propargyl (C3H3) radicals, from Miller et al. [39]

TABLE II
INITIAL GAS COMPOSITION FOR CHEMKIN COMPUTATIONS

Ø
Mole
Fraction[%]

0.8 1 2 3 5

n-heptane, C7H16 0.8823 1.1005 2.1685 3.202 5.191

Toluene, C7H8 0.3027 0.3795 0.7475 1.102 1.787

Oxygen, O2 20.705 20.651 20.345 20.054 19.495

Nitrogen, N2 78.110 77.869 76.739 75.642 73.527
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The effect of adding water to fuel in the form of emulsion
creates many different changes in the combustion process
inside the PaSR reactor model which is adopted to represent
the actual diesel engine for this study. Those changes affect
mainly the combustion temperature and the formation of many
other species such as CO, OH, NOX and soot precursors’
species. The later are formed in a rich, premixed reaction zone
that initiates the soot-generating reactions [40], [41]. The
concentration of soot precursor species available to produce
soot are strongly depending on the amount of oxygen available
in the mixture. When sufficient oxygen is available, soot
precursor species react with molecular oxygen or oxygen-
containing radicals (OH, O, etc.) and eventually produce CO
rather than aromatics and soot. Thus, this kind of reactions is
considered to be another source of increasing the CO
formation level.Figures 2 and 3  predict  the effect of adding 3,
5, 8 and 15% water to fuel on the formation of soot precursor
C3H3 at two  different air/fuel equivalent ratios (Ø=0.8, 2).As
shown in Figure 2, the formation of C3H3 at Ø=0.8 decreases
when 3 and 5% water added to fuel, however, when adding
more water (8 and 15 % water) to fuel, the formation of
propargyl species noticeably increased. That means the
formation level of soot precursors inside the PaSR reactor are
very sensitive to water content. Temperature reduction and the
slightly reduction in the formation  of OH radicals cause the
increase in soot precursors when more water is added to fuel.
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3,
 [
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le
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io

15% H 2 O
Ø =0.8

8% H 2 O
Ø =0.8

5% H 2 O
Ø =0.8

3% H 2 O
Ø =0.8

C 3 H 3
0%  H 2 O
Ø =0.8

Fig. 2 Concentration of C3H3 precursors change with time at the
combustion of surrogate fuel/water emulsion of 0, 3, 5, 8 and

15% water-in-fuel, at Ø=0.8

For the case of fuel-rich (Ø=2), Figure 3 shows the change
of C3H3 with water content in fuel. It is clear that C3H3

formation increases with the increasing amount of water in
fuel, because in addition to a significant amount of fuel always
remains un-oxidized at higher fuel/air equivalence ratio, soot
precursors among which C3H3 has a higher concentration at
(Ø=2) than that of the fuel-lean case (Ø=0.8), as shown in
Figure 3 The trend of C3H3 formation illustrated in this figure
predicts the affect of fuel-rich combustion at lower
temperature on generating a suitable environment for soot
precursors’ formation.
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Fig. 3 Concentration of C3H3 precursors change with time at the
combustion of surrogate fuel/water emulsion of 0, 3, 5, 8 and 15%

water-in-fuel, at Ø=2

Diesel fuel contains a variety of different hydrocarbons,
among which aromatics are the major source of smoke
emissions, hence aromatics are significant contributors to the
formation of soot particles in the combustion process where
the chemical kinetic mechanism predicts too slow formation of
PAH at low temperature. The growth of larger aromatic
species follows essentially the HACA (H-Abstraction-C2H2-
Addition) mechanism [43]. The HACA mechanism assumes a
sequential two step process toward the formation of aromatic
ring: H-abstraction, which activates the aromatic molecules,
followed by acetylene addition and molecular growth then
cyclization of PAH [42]–[44].

Therefore starting with a surrogate fuel (80% n-heptane and
20% toluene), which contains aromatics, predicts the
importance of  the  “direct molecular combination ” and the
intact of aromatic rings. For example, in the case of high
temperature pyrolysis of benzene the reactions shown in figure
4 predicts the significance of the PAH molecular growth in the
initial stages [38], [42]–[44]. However, as the reaction
proceeds, the initial benzene molecule decomposes to form
acetylene; which increases the concentration of acetylene to be
comparable with that of benzene therefore the PAH growth
mechanism switches back to the HACA mechanism.

+ + H

+H-H2

+C2H2

-H

+H

Fig.4 PAH growth initiated by aromatic combination of two benzene
rings [38]
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To understand the effect of adding water to surrogate fuel in
the PaSR combustion model, figures 6 through 9 are plotted
for several PAH compounds at 3, 5, 8 and 15 % water in fuel.
It is depicted from those figures that the formation of benzene,
naphthalene, phenanthrene and chrysene have the tendency to
decrease at fuel lean condition when water is added to fuel.
However, it decreases slowly with the increasing amount of
water in fuel; therefore the 15 % water in fuel predicts the
highest PAH precursor’s concentrations among the other
percentages of water in fuel but still lower than the
concentration of the pure fuel; whereas the lowest
concentration is found for 5 % water in fuel.

The formed benzene rings can combine with the available
aromatic toluene compounds and  play an important role in
PAHs and soot formation, as illustrated in figures 1 and 4.
Water play a significant role in oxidizing soot precursors
either by the reactions of propargyl precursors with OH
radicals before they can form the benzene rings, as shown in
reaction (1), or the oxidation of the PAH precursors formed
from toluene with OH radicals as shown in figure 5  .

C3H3 + OH = C3H2 + H2O (1)

+OH

O

Hydroxylation
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Fig. 5 Reaction mechanisms for the oxidation of naphthalene with

OH radicals from Onwudili et.al [43]
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15% water in fuel
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For higher equivalent ratio (i.e. fuel-rich), the peak PaSR
model temperature decreases, whereas soot precursors
formation and un-burned fuel increase as shown in figures (10-
13). This would emphasize the tendency of the aromatic
compounds to form soot particles at low temperature and fuel
rich combustion.
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Fig. 10 Calculated temperature for air/ (80% n-Heptane+20%
Toluene) mixtures of different fuel/air-equivalence ratios [45]
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Adding water to surrogate fuel at fuel rich condition results
in further decrease in temperature [45]. The model shows a
decrease in soot precursors’ formation as shown in figures 13
through 16. This reduction is significant at 5% water in fuel

which shows the lowest value, however it starts to increase
slowly with the increasing amount of water in fuel up to 8%
water, after that the formation tendency starts to increase and
reaches the maximum at 15% water in fuel. Thus it is clear
that; at fuel rich condition more water in fuel (i.e. 15% and
above) may inversely affect the production rate of soot
precursors.
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Fig. 13 Benzene concentration change with different time at the
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15% water in fuel
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Fig. 16 Chrysene concentration change with different time at the
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III. CONCLUSION

A remarkable decrease in the peak value of soot precursors’
formation was found after the addition of 5% water to fuel;
however, this value decreased slightly with the increasing
amount of water through the ratio 5 to 15%. That means extra
amount of water in fuel can inversely affect soot formation
level. Also It was depicted that the increase in water content of
the emulsified fuel results in the increase of time lag from the
start of fuel injection to the time where the peak amount of
soot starts to appear. It is conceivable from the results of
previous researches that the reduction in  soot formation is due
to a proper mixing of fuel and air which arise from secondary
atomization phenomena  and the decrease of flame
temperature. However in this work; two possible effects have
been hypothesized by which addition of water vapor can affect
soot formation:  a thermal effect and a chemical effect. The
thermal effect is due to the reduction in the flame temperature
which results in reducing the formations level of soot
precursors and the chemical effect was attributed to changes in
the radical pool by the presence of water vapor which
enhances the formation of hydroxyl radicals to subsequently
attack the soot precursors and suppress their formation.

The effect of equivalent ratio in this analysis is very clear:
It is depicted that at fuel lean conditions the formation of soot
precursors such as benzene, naphthalene, phenanthrene and
chrysene have a tendency to decrease when water is added to
fuel. However, it decreases slowly with the increasing amount
of water; where the 15 % water in fuel predicts the highest
PAH precursor’s concentrations but it is still lower than that of
the pure fuel concentration; whereas the lowest concentration
is found for 5 % water in fuel.

For higher equivalent ratio(i.e. fuel-rich), the peak
temperature of PaSR model decreases, results in increasing the
soot precursors formation as well as increasing the amount of
un-burned fuel and that’s would explain the tendency of the
aromatic compounds to form soot particles at low temperature
and fuel rich conditions.

This reduction is significant at 5% water in fuel which
shows the lowest value, however it starts to increase slowly
with the increasing amount of water in fuel up to 8% water,
after that the formation tendency starts to increase and reaches
the maximum at 15% water in fuel. Thus it is clear that; at fuel
rich condition ‘with more water in fuel’ (i.e. 15% and above)
the situation will be different and it may inversely affect the
production rate of soot precursors.
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