Search results for: response to oxidative stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8595

Search results for: response to oxidative stress

8565 The Oxidative Damage Marker for Sodium Formate Exposure on Lymphocytes

Authors: Malinee Pongsavee

Abstract:

Sodium formate is the chemical substance used for food additive. Catalase is the important antioxidative enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). The resultant level of oxidative stress in sodium formatetreated lymphocytes was investigated. The sodium formate concentrations of 0.05, 0.1, 0.2, 0.4 and 0.6 mg/mL were treated in human lymphocytes for 12 hours. After 12 treated hours, catalase activity change was measured in sodium formate-treated lymphocytes. The results showed that the sodium formate concentrations of 0.4 and 0.6 mg/mL significantly decreased catalase activities in lymphocytes (P < 0.05). The change of catalase activity in sodium formate-treated lymphocytes may be the oxidative damage marker for detect sodium formate exposure in human.

Keywords: sodium formate, catalase activity, oxidative damage marker, toxicity

Procedia PDF Downloads 446
8564 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)

Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi

Abstract:

Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.

Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress

Procedia PDF Downloads 357
8563 The Growth Reaction, Membrane Potential and Oxidative Stress of Maize Coleoptile Cells Incubated in the Presence of the Naphthoquinones

Authors: Malgorzata Rudnicka, Waldemar Karcz

Abstract:

Introduction: Naphthoquinones are widely occurring organic compounds produced by bacteria, fungi, and plants. They can act as the functional components of biochemical systems (plastoquinone) as well as biologically active substances, which have a negative impact on environmental processes. Naphthoquinones seem to act through two mechanisms: a covalent modification of biological molecules at their nucleophilic sites or by generation of reactive oxygen species (ROS) connected with redox cycling. Investigating the effect of naphthoquinones (1,4-naphthoquinone, lawsone and naphthazarin) on the elongation growth, membrane potential and the level of oxidative stress of maize cells seems to be important due to the possibility of using these substances as herbicides. Methods: All experiments were performed on etiolated maize coleoptile segments. Simultaneous measurements of elongation growth and pH of the incubation medium were carried out using an angular position transducer, allowing a precise record of the growth kinetics. To compare the oxidative stress level induced by all tested naphthoquinones, the changes in malondialdehyde content, as well as superoxide dismutase and catalase activities were measured. In order to measure the membrane potential of parenchymal cells the standard electrophysiology technique was used. Results: Naphthoquinones such as: 1,4-naphthoquinone, lawsone and naphthazarin were studied. It was found that all of the naphthoquinones diminished the growth of the maize coleoptile cells depending on the type of naphthoquinones and their concentration. Interestingly, naphthazarin at the intermediate concentration was less toxic compared to the others. In addition, the effect of naphthoquinones on the oxidative stress was dependent on their concentration as well. Superoxide dismutase and catalase activities were changed in the presence of higher concentrations of naphthoquinones. Similar interrelations were observed for membrane potential changes. Conclusion: It can be concluded that naphthoquinones tested differ in their toxic effect on the growth of maize coleoptile cells. Furthermore, naphthoquinones can be distinguish considering the oxidative stress level and membrane potential changes. The results presented here give new insight into the possible opportunities of practical usage of naphthoquinones for herbicides improvement.

Keywords: growth rate, membrane potential, naphthoquinones, oxidative stress

Procedia PDF Downloads 253
8562 Nanoparaquat Effects on Oxidative Stress Status and Liver Function in Male Rats

Authors: Zahra Azizi, Ashkan Karbasi, Farzin Firouzian, Sara Soleimani Asl, Akram Ranjbar

Abstract:

Background: One of the most often used herbicides in agriculture is paraquat (PQ), which is very harmful to both people and animals. Chitosan is a well-known, non-toxic polymer commonly used in preparing particles via ionotropic gelation facilitated by negatively charged agents such as sodium alginate. This study aimed to compare the effects of PQ and nanoparaquat (PQNPs) on liver function in male rats. Materials & Methods: Rats were exposed to PQ & PQNPs (4 mg/kg/day, intraperitoneally) for seven days. Then, rats were anesthetized, and serum and liver samples were collected. Later, enzymatic activities such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in serum and oxidative stress biomarkers such as lipid peroxidation (LPO), total antioxidant capacity (TAC) and total thiol groups (TTG) levels in liver tissue were measured by colorimetric methods. Also, histological changes in the liver were evaluated. Results: PQ altered the levels of ALT, AST, and ALP while inducing oxidative stress in the liver. Additionally, liver homogenates with PQ exposure had challenged LPO, TAC, and TTG levels. The severe liver damage is indicated by a significant increase in the enzyme activity of AST, ALT, and ALP in serum. According to the results of the current study, PQNPs, as compared to PQ and the control group, lowered ALT, AST, ALP, and LPO levels while increasing TAC and TTG levels. Conclusion: According to biochemical and histological investigations, PQ loaded in chitosan-alginate particles is more efficient than free PQ at reducing liver toxicity.

Keywords: paraquat, paraquat nanoparticles, liver, oxidative stress

Procedia PDF Downloads 27
8561 The Effect of Santolina Plant Extract on Nitro-Oxidative Stress

Authors: Sabrina Sebbane, Alina Elena Parvu

Abstract:

Introduction: Santolina rosmarinifolia is a plant of the Santolina genus, a family made of medicinal plants widely used. Some of the Santolina species have been proven to have potent anti-inflammatory and anti-oxidant effects. However, no in vivo study has been made to demonstrate this in Santolina rosmarinifolia. The aim of our study is to experimentally evaluate the potential anti-inflammatory and anti-oxidant effects of Santolina rosmarinifolia plant extracts on acute inflammation in rats. These effects are defined by measuring the modifications on nitric oxide, reactive oxygen species and anti-oxidant response in serum. Materials and Methods: Rats were divided into 5 groups (n=6). Three groups were given Santolina rosmarinifolia extract by gavage in different concentrations(100%, 50%, 25%) for a week. Inflammation was induced by i.m injection of turpentine oil on the 8th day. One group was only given turpentine oil and the fifth group acted as control and was given only saline solution. Blood was collected and serum separated. Global tests were used to measure the oxidative stress, total oxidative status (TOS), total antioxidant reactivity (TAR) and the modified method of Griess assay to measure NO synthesis. Malondilaldehyde (MDA) and thiols levels were also assessed. Results: Santolina rosmarinifolia did not significantly change the TOS levels (p > 0.05). Santolina rosmarinifolia 25% and 50% decreased significantly the TAR levels (p < 0.001). Santolina 100% didn't have a significant effect on TAR (p > 0.05). All concentrations of Santolina rosmarinifolia increased the oxidative stress index (OSI) significantly(p < 0.05). Santolina rosmarinifolia 100% significantly decreased NO synthesis (p value < 0.05). In the diluted Santolina groups, no significant effect on NO synthesis was observed. In the groups treated with Santolina 100% and Santolina rosmarinifolia 50%, thiols concentration were significantly higher compared to the inflammation group (p < 0.02). A higher stimulatory effect was found in the Santolina 25% group (p value < 0.05). MDA levels were not significantly modified by the administration of Santolina rosmarinifolia (p > 0.05). Conclusion: All three solutions of Santolina rosmarinifolia had no important effect on oxidant production. However, Santolina rosmarinifolia solutions had a positive effect by increasing the thiols concentration in the serum of the models. The sum of all the effects produced by the administration of Santolina did not show a significant decrease of nitro-oxidative stress. Further experiments including smaller concentrations of Santolina rosmarinifolia will be made. Santolina rosmarinifolia should also be tested as a curative treatment.

Keywords: inflammation, MDA, nitric oxide, santolina rosmarinifolia, thiols, TAR, TOS

Procedia PDF Downloads 236
8560 Amelioration of Lipopolysaccharide Induced Murine Colitis by Cell Wall Contents of Probiotic Lactobacillus Casei: Targeting Immuno-Inflammation and Oxidative Stress

Authors: Vishvas N. Patel, Mehul Chorawala

Abstract:

Currently, according to the authors best knowledge there are less effective therapeutic agents to limit intestinal mucosa damage associated with inflammatory bowel disease (IBD). Clinical studies have shown beneficial effects of several probiotics in patients of IBD. Probiotics are live organisms; confer a health benefit to the host by modulating immunoinflammation and oxidative stress. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the ameliorative potential of cell wall contents of Lactobacillus casei (LC) in lipopolysaccharide (LPS)-induced murine colitis. Methods: Colitis was induced in LPS-sensitized rats by intracolonic instillation of LPS (50 µg/rat) for consecutive 14 days. Concurrently, cell wall contents isolated from 103, 106 and 109 CFU of LC was given subcutaneously to each rat for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight and histological analysis. Colonic inflammatory markers (myeloperoxidase (MPO) activity, C-reactive protein and proinflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione and nitric oxide) were also assayed. Results: Cell wall contents of isolated from 106 and 109 CFU of LC significantly improved the severity of colitis by reducing body weight loss and diarrhea & bleeding incidence, improving food intake, colon weight/length, spleen weight and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted antioxidant molecule. However, cell wall contents of isolated from 103 were ineffective. Conclusion: In conclusion, cell wall contents of LC attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.

Keywords: probiotics, Lactobacillus casei, immuno-inflammation, oxidative stress, lipopolysaccharide, colitis

Procedia PDF Downloads 57
8559 Mechanism of Action of Troxerutin in Reducing Oxidative Stress

Authors: Nasrin Hosseinzad

Abstract:

Troxerutin, a trihydroxyethylated derived of rutin, is a flavonoid existing in tea, coffee, cereal grains, various fruits and vegetables have been conveyed to display radioprotective, antithrombotic, nephron-protective and hepato-protective possessions. Troxerutin, has been well-proved to utilize hepatoprotective assets. Troxerutin could upturn the resistance of hippocampal neurons alongside apoptosis by lessening the action of AChE and oxidative stress. Consequently, troxerutin may have advantageous properties in the administration of Alzheimer's disease and cancer. Troxerutin has been testified to have several welfares and medicinal stuffs. It could shelter the mouse kidney against d-gal-induced damage by refining renal utility, decreasing histopathologic changes, dropping ROS construction, reintroducing the activities of antioxidant enzymes and reducing DNA oxidative destruction. The DNA cleavage study clarifies that troxerutin showed DNA protection against hydroxyl radical persuaded DNA mutilation. Troxerutin uses anti-cancer effect in HuH-7 hepatocarcinoma cells conceivably through synchronized regulation of the molecular signalling pathways, Nrf2 and NF-κB. DNA binding at slight channel by troxerutin may have donated to feature breaks leading to improved radiation brought cell death. Furthermore, the mechanism principal the observed variance in the antioxidant activities of troxerutin and its esters was qualified to equally their free radical scavenging capabilities and dissemination on the cell membrane outward.

Keywords: troxerutin, DNA, oxidative stress, antioxidant, free radical

Procedia PDF Downloads 132
8558 Zooplankton Health Status Monitoring in Bir Mcherga Dam (Tunisia)

Authors: Sabria Barka, Imen Gdara, Zouhour Ouanès, Samia Mouelhi, Monia El Bour, Amel Hamza-Chaffai

Abstract:

Because dams are large semi-closed reservoirs of pollutants originating from numerous anthropogenic activities, they represent a threat to aquatic life and they should be monitored. The present work aims to use freshwater zooplankton (Copepods and Cladocerans) in order to evaluate the environmental health status of Bir M'cherga dam in Tunisia. Animals were collected in situ monthly between October and August. Genotoxicity (micronucleus test), neurotoxicity (acetylcholinesterase, AChE) and oxidative stress (catalase, CAT and malondialdehyde, MDA) biomarkers were analyzed in zooplankton. High frequencies of micronucleus were observed in zooplankton cells during summer. AChE activities were inhibited during early winter and summer. CAT and MDA biomarker levels showed high seasonal variability, suggesting that animals are permanently exposed to multiple oxidative stress. The results of this study suggest that the Bir Mcherga dam is subject to continuous multi-origin stress, probably amplified by abiotic parameters. It is then recommended to urgently monitor freshwater environments in Tunisia, especially those used for irrigation and consumption.

Keywords: Biomonitoring, Bir Mcherga Dam, cladocerans, copepods, freshwater zooplankton, genotoxicity, neurotoxicity, oxidative stress, Tunisia

Procedia PDF Downloads 42
8557 Mitochondrial DNA Defect and Mitochondrial Dysfunction in Diabetic Nephropathy: The Role of Hyperglycemia-Induced Reactive Oxygen Species

Authors: Ghada Al-Kafaji, Mohamed Sabry

Abstract:

Mitochondria are the site of cellular respiration and produce energy in the form of adenosine triphosphate (ATP) via oxidative phosphorylation. They are the major source of intracellular reactive oxygen species (ROS) and are also direct target to ROS attack. Oxidative stress and ROS-mediated disruptions of mitochondrial function are major components involved in the pathogenicity of diabetic complications. In this work, the changes in mitochondrial DNA (mtDNA) copy number, biogenesis, gene expression of mtDNA-encoded subunits of electron transport chain (ETC) complexes, and mitochondrial function in response to hyperglycemia-induced ROS and the effect of direct inhibition of ROS on mitochondria were investigated in an in vitro model of diabetic nephropathy using human renal mesangial cells. The cells were exposed to normoglycemic and hyperglycemic conditions in the presence and absence of Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or catalase for 1, 4 and 7 days. ROS production was assessed by the confocal microscope and flow cytometry. mtDNA copy number and PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 transcripts, were all analyzed by real-time PCR. PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 proteins, were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. Hyperglycemia-induced a significant increase in the production of mitochondrial superoxide and hydrogen peroxide at day 1 (P < 0.05), and this increase remained significantly elevated at days 4 and 7 (P < 0.05). The copy number of mtDNA and expression of PGC-1a, NRF-1, and TFAM as well as ND2, CYTB, CO1 and ATPase 6 increased after one day of hyperglycemia (P < 0.05), with a significant reduction in all those parameters at 4 and 7 days (P < 0.05). The mitochondrial membrane potential decreased progressively at 1 to 7 days of hyperglycemia with the parallel progressive reduction in ATP levels over time (P < 0.05). MnTBAP and catalase treatment of cells cultured under hyperglycemic conditions attenuated ROS production reversed renal mitochondrial oxidative stress and improved mtDNA, mitochondrial biogenesis, and function. These results show that hyperglycemia-induced ROS caused an early increase in mtDNA copy number, mitochondrial biogenesis and mtDNA-encoded gene expression of the ETC subunits in human mesangial cells as a compensatory response to the decline in mitochondrial function, which precede the mtDNA defect and mitochondrial dysfunction with a progressive oxidative response. Protection from ROS-mediated damage to renal mitochondria induced by hyperglycemia may be a novel therapeutic approach for the prevention/treatment of DN.

Keywords: diabetic nephropathy, hyperglycemia, reactive oxygen species, oxidative stress, mtDNA, mitochondrial dysfunction, manganese superoxide dismutase, catalase

Procedia PDF Downloads 224
8556 Effects of Live Yeast Supplementation to Reduce Oxidative Stress and Increase Lactation Performance of Dairy Cattle during the Summer Season

Authors: Ahmad Nawid Mirzad, Akira Goto, Takuto Endo, Hitoshi Ano, Hiromu Katamoto, Takenori Yamauchi

Abstract:

The objective of this study was to evaluate the effects of live yeast supplementation on oxidative stress biomarker and antioxidant vitamin levels as well as lactation performance in Holstein Friesian cows during the summer season in Fukuoka prefecture. Sixteen lactating cows weighing 707.50 ± 13.09 kg (Mean ± SE) were used and randomly assigned to either supplemented (n = 8) or control (n = 8) group. The cows in supplemented group were administered with live yeast product at 10 g/d per cow from middle of July to middle of September for eight weeks. In treatment group, serum levels of derivatives of reactive oxygen metabolites (d-ROMs) were lower at week six. In addition, serum levels of glucose and retinol were higher at week eight and those of α-tocopherol were higher at week 2 in treatment group. During study period daily average milk yield decreased in both groups. Daily average milk yield 63 days after the onset of supplementation in treatment and control groups were 23.5 and 22.2 kg, respectively. The reduction rate of milk yield in treatment group tended to be lower (17.6 vs. 20.0%). These results suggest that live yeast supplementation may reduce oxidative stress and improve energy metabolism in lactating dairy cows during the summer season.

Keywords: cow, live yeast, milk, oxidative stress, summer season

Procedia PDF Downloads 132
8555 Cucurbita pepo L. Attenuates Diabetic Neuropathy by Targeting Oxidative Stress in STZ-Nicotinamide Induced Diabetic Rats

Authors: Navpreet Kaur, Randhir Singh

Abstract:

Diabetic neuropathy is one of the most common microvascular complications of diabetes mellitus which affects more than 50% of diabetic patients. The present study targeted oxidative stress mediated nerve damage in diabetic rats using a hydro-alcohol extract of Cucurbita pepo L. (Family: Cucurbitaceae) and its potential in treatment of diabetic neuropathy. Diabetes neuropathy was induced in Wistar rats by injection of streptozotocin (65 mg/kg, i.p.) 15 min after Nicotinamide (230 mg/kg, i.p.) administration. Hydro-alcohol extract of C. pepo seeds was assessed by oral administration at 100, 200 and 400 mg/kg in STZ-nicotinamide induced diabetic rats. Thermal hyperalgesia (Eddy's hot plate and tail immersion), mechanical hyperalgesia (Randall-Selitto) and tactile allodynia (Von Frey hair tests) were evaluated in all groups of streptozotocin diabetic rats to assess the extent of neuropathy. Tissue (sciatic nerve) antioxidant enzymes (SOD, CAT, GSH and LPO) levels were measured along with the formation of AGEs in serum to assess the effect of hydro-alcohol extract of C. pepo in ameliorating oxidative stress. Diabetic rats exhibited significantly decreased tail-flick latency in the tail-immersion test and decreased paw withdrawal threshold in both Randall-Selitto and von-Frey hair test. A decrease in the nociceptive threshold was accompanied by significantly increased oxidative stress in sciatic nerve of diabetic rats. Treatment with the C. pepo hydro-alcohol extract significantly attenuated all the behavioral and biochemical alterations in a dose-dependent manner. C. pepo attenuated the diabetic condition and also reversed neuropathic pain through modulation of oxidative stress and thus it may find application as a possible therapeutic agent against diabetic neuropathy.

Keywords: advanced glycation end products, antioxidant enzymes, cucurbita pepo, hyperglycemia

Procedia PDF Downloads 265
8554 NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis

Authors: Shenghu Feng, Jun Cheng

Abstract:

The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress.

Keywords: NS5ABP37, liver cancer, lipid metabolism, oxidative stress, ER stress

Procedia PDF Downloads 126
8553 Preventive Effect of Stem Back Extracts of Coula edulis Baill. against High-Fat / High Sucrose Diet-Induced Insulin Resistance and Oxidative Stress in Rats

Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben

Abstract:

Background: Insulin resistance (IR) and oxidative stress are associated with obesity, diabetes mellitus, and other cardio metabolic disorders. The aim of this study was to investigate the effect of Coula edulis extracts (CEE) on insulin resistance and oxidative stress markers in high-fat/high sucrose diet-induced insulin resistance in rats. Materials and Methods: Thirty male rats were divided into 6 groups of 5 rats each fed, received daily oral administration of CE extracts for 8 weeks as follows: Group 1 or negative control group, fed with standard diet (SD); Group 2 fed with high-fat/high sucrose diet (HFHS) only; Group3 fed with HFHS + CEAq 200; Group 4 fed with HFHS + CEAq 400; Group 5 fed with HFHS + CEEt 200; Group 6 fed with HFHS + CEEt 400. At the end of the experiment (8 weeks), animals were sacrificed plasma lipid profile, glucose, insulin, oxidative marker and digestive enzyme activities were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Results: Feedings with HFHS significantly (p < 0.01) induced plasma hyperglycaemia, hyperinsulinaemia, increased triglyceride, total cholesterol, and low-density lipoprotein levels, decreased high-density lipoprotein levels, alterations of α amylase, and glucose-6-phosphatase activities, and oxidative stress. Daily oral administration with CEE for eight weeks after insulin resistance induction had a hypolipidaemic action, antioxidative activities and modulated metabolic markers. Ethanolic extract at the higher dose had the best effect on body weight gain and insulin resistance, whereas aqueous extract showed the better activity on hyperlipidemia. Conclusion: These results suggest that CEAq and CEEt at 400mg/kg are promising complementary supplements that can be used to protect better from metabolic disorders associated with HFHS.

Keywords: Coula edulis Baill, high-fat / high sucrose diet, insulin resistance, oxidative stress

Procedia PDF Downloads 272
8552 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models

Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi

Abstract:

Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209

Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress

Procedia PDF Downloads 121
8551 The Antioxidant and Antinociceptive Effects of Curcumin in Experimentally Induced Pain in Rats

Authors: Valeriu Mihai But, Sorana Daniela Bolboacă, Adriana Elena Bulboacă

Abstract:

The nutraceutical compound Curcumin (Curcuma longa L.) is known for its anti-inflammatory, anti-cancer, and antioxidant effects. This study aimed to evaluate the antioxidative and analgesic effects of Curcumin (CC) compared to Tramadol (T) in chemical-induced nociceptive pain in rats. Thirty-five rats were randomly divided into five groups of seven rats each and were treated as follows: C group (control group): treated with saline solution 0.9%, (1 ml, i.p. administration), ethanoic acid (EA) group: pretreated with saline solution 0.9% - 30 min before EA nociceptive pain induction, (1 ml, i.p. administration), T group: pretreated with Tramadol, 10 mg/kg body weight (bw), i.p. administration - 30 min before EA nociceptive pain induction, CC1-group: pretreated with 1 mg/100g bw Curcumin i.p. administration - 2 days before EA pain induction and CC2-group: pretreated with Curcumin 2 mg/100g bw i.p. administration - 2 days before EA nociceptive pain induction. The following oxidative stress parameters were assessed: malondialdehyde (MDA), nitric oxide (NOx), total oxidative status (TOS), total antioxidative capacity (TAC), and thiol (Th). The antalgic activity was measured by the ethanoic acid writhing test. Treatment with Curcumin, both 1 mg/100g bw, and 2 mg/100g bw, showed significant differences as compared with the control group (p<0.001) regarding malondialdehyde (MDA), nitric oxide (NOx), and total oxidative status (TOS) oxidative biomarkers. Pretreatment with 2 mg/100g bw of Curcumin presented a significant decrease in MDA values compared with Tramadol (p<0.001). The TAC significantly increased in pretreatment with Curcumin compared with group control. (p<0.001) The nociceptive response to EA was significantly reduced in Curcumin and Tramadol groups. Treatment with Curcumin at a higher concentration was more effective. In an experimental pain model, this study demonstrates an important antioxidant and antinociceptive activity of Curcumin comparable with Tramadol treatment.

Keywords: curcumin, nociception, oxidative stress, pain

Procedia PDF Downloads 82
8550 Role of Sulforaphane on Alleviating Duchenne Muscular Dystrophy(DMD) through Activation of Nrf2

Authors: Chengcao Sun, Shujun Li, Dejia Li

Abstract:

Sulforaphane (SFN) possesses powerful chemo-preventive effects and plays a crucial role on oxidative stress and inflammatory. In our recent study, SFN treatment could relieve muscular dystrophy in mdx mice by activating Nrf2 (NF-E2 related factor 2). Moreover, our findings indicated that SFN-activated Nrf2 alleviated muscle inflammation in dystrophin-deficient mdx mice through suppressing NF-κB signaling pathway. Collectively, SFN-induced Nrf2 molecular pathway might be a promising approach for treatment of the patients with Duchenne muscular dystrophy.

Keywords: sulforaphane, Duchenne muscular dystrophy, Nrf2, inflammation, fibrosis, oxidative stress

Procedia PDF Downloads 184
8549 Effect of Oxidative Stress on Glutathione Reductase Activity of Escherichia coli Clinical Isolates from Patients with Urinary Tract Infection

Authors: Fariha Akhter Chowdhury, Sabrina Mahboob, Anamika Saha, Afrin Jahan, Mohammad Nurul Islam

Abstract:

Urinary tract infection (UTI) is frequently experienced by the female population where the prevalence increases with aging. Escherichia coli, one of the most common UTI causing organisms, retains glutathione defense mechanism that aids the organism to withstand the harsh physiological environment of urinary tract, host oxidative immune response and even to affect antibiotic-mediated cell death and the emergence of resistance. In this study, we aimed to investigate the glutathione reductase activity of uropathogenic E. coli (UPEC) by observing the reduced glutathione (GSH) level alteration under stressful condition. Urine samples of 58 patients with UTI were collected. Upon isolation and identification, 88% of the samples presented E. coli as UTI causing organism among which randomly selected isolates (n=9), obtained from urine samples of female patients, were considered for this study. E. coli isolates were grown under normal and stressful conditions where H₂O₂ was used as the stress-inducing agent. GSH level estimation of the isolates in both conditions was carried out based on the colorimetric measurement of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) and GSH reaction product using microplate reader assay. The GSH level of isolated E. coli sampled from adult patients decreased under stress compared to normal condition (p = 0.011). On the other hand, GSH production increased markedly in samples that were collected from elderly subjects (p = 0.024). A significant partial correlation between age and change of GSH level was found as well (p = 0.007). This study may help to reveal ways for better understanding of E. coli pathogenesis of UTI prevalence in elderly patients.

Keywords: Escherichia coli, glutathione reductase activity, oxidative stress, reduced glutathione (GSH), urinary tract infection (UTI)

Procedia PDF Downloads 298
8548 Antioxidant Effects of C-Phycocyanin on Oxidized Astrocyte in Brain Injury Using 2D and 3D Neural Nanofiber Tissue Model

Authors: Seung Ju Yeon, Seul Ki Min, Jun Sang Park, Yeo Seon Kwon, Hoo Cheol Lee, Hyun Jung Shim, Il-Doo Kim, Ja Kyeong Lee, Hwa Sung Shin

Abstract:

In brain injury, depleting oxidative stress is the most effective way to reduce the brain infarct size. C-phycocyanin (C-Pc) is a well-known antioxidant protein that has neuroprotective effects obtained from green microalgae. Astrocyte is glial cell that supports the nerve cell such as neuron, which account for a large portion of the brain. In brain injury, such as ischemia and reperfusion, astrocyte has an important rule that overcomes the oxidative stress and protect from brain reactive oxygen species (ROS) injury. However little is known about how C-Pc regulates the anti-oxidants effects of astrocyte. In this study, when the C-Pc was treated in oxidized astrocyte, we confirmed that inflammatory factors Interleukin-6 and Interleukin-3 were increased and antioxidants enzyme, Superoxide dismutase (SOD) and catalase was upregulated, and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) was alleviated. Also, it was confirmed to reduce infarct size of the brain in ischemia and reperfusion because C-Pc has anti-oxidant effects in middle cerebral artery occlusion (MCAO) animal model. These results show that C-Pc can help astrocytes lead neuroprotective activities in the oxidative stressed environment of the brain. In summary, the C-PC protects astrocytes from oxidative stress and has anti-oxidative, anti-inflammatory, neurotrophic effects under ischemic situations.

Keywords: c-phycocyanin, astrocyte, reactive oxygen species, ischemia and reperfusion, neuroprotective effect

Procedia PDF Downloads 289
8547 Olive Oil (Olea europea L.) Protects against Mercury (II) Induced Oxidative Tissue Damage in Rats

Authors: Ahlem Bahi, Youcef Necib, Sakina Zerizer, Cherif Abdennour, Mohamed Salah Boulakoud

Abstract:

Mercury (II) is a highly toxic metal which induces oxidative stress in the body. In this study, we aimed to investigate the possible protective effect of olive oil, an antioxidant agent, against experimental mercury toxicity in rat model. Administration of mercuric chloride induced significant increase in serum: ALT, AST, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels. Mercuric chloride also induced oxidative stress, as indicate by decreased tissue of GSH level, GSH-Px, and GST activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney and liver weight and decreased body weight. Virgin olive oil treatment markedly reduced elevated serum: AST, ALT, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels and contracted the deterious effects of mercuric chloride on oxidative stress markers changes caused by HgCl2 in tissue as compared to control group. Our results implicate that mercury induced oxidative damage in liver and kidney tissue protected by virgin olive oil, with its antioxidant effects.

Keywords: mercury, antioxidant enzymes, pro-inflammatory cytokine, virgin olive oil, lipid peroxidation

Procedia PDF Downloads 335
8546 Effect of Clerodendrum Species on Oxidative Stress with Possible Implication in Alleviating Carcinogenesis

Authors: Somit Dutta, Pallab Kar, Arnab Kumar Chakraborty, Arnab Sen, Tapas Kumar Chaudhuri

Abstract:

In the present study three species of Clerodendrum; Clerodendrum indicum, Volkameria inermis and Clerodendrum colebrookianum were used to investigate the possible activity against oxidative stress. A detailed in-vivo and in-vitro antioxidant profiling, directly associated with inflammation-related carcinogenesis, has been executed with a motive to evaluate the free radical scavenging activity of Clerodendrum extract. Measurement of cell viability and ROS generation in HEK-293 (Human Embryonic Kidney Cell Line) cells was also estimated. The immune cell proliferative properties (MTT) and in-vitro assay for evaluation of their antioxidant activities including hydroxyl radical, nitric oxide, singlet oxygen, peroxinitrate and hydrogen peroxide, etc. were investigated. GC-MS and FTIR analyses have been performed to identify the active biological compounds. These active biological compounds were further studied to assess their potential medicinal properties, aided by molecular docking and interaction analysis between the active compounds and different proteins related to oxidative stress leading to progression of carcinogenesis. The research article clearly demonstrates the role of ROS in various phases of carcinogenesis. Therefore, the antioxidant and free radical scavenging capacity of all the Clerodendrum species might prove beneficial for the immune system. It might be concluded that this plant species offers great promise for cancer prevention and therapy due to the presence of several bioactive compounds and potent antioxidant capacity of C. colebrookianum.

Keywords: antioxidant, cancer, oxidative stress, reactive oxygen species (ROS)

Procedia PDF Downloads 253
8545 Acute Phase Proteins, Proinflammatory Cytokines and Oxidative Stress Biomarkers in Sheep with Pneumonic Pasteurellosis

Authors: Wael M. El-Deeb

Abstract:

The aim of this study was to assess the pathophysiological importance of lipid profile, acute phase proteins, proinflammatory cytokines and oxidative stress markers in sheep with pneumonic pasteurellosis. Blood samples were collected from 36 Pasteurellamultocida-infected sheep, together with 20 healthy controls. Samples for bacteriological examination (nasal swabs, bronchoalveolar lavage) were collected from all animals and subjected to bacteriological examinations. Moreover, heart blood and lung samples were collected from the dead pneumonic sheep and subjected also to bacteriological examinations. A lipid profile was determined, along with a blood picture and other biochemical parameters. The acute phase proteins (fibrinogen, haptoglobin, serum amyloid A), the proinflammatory cytokine tumour necrosis factor-alpha, interleukins (IL-1α, IL-1β, IL-6), interferon-gamma and the oxidative stress markers malondialdehyde, super oxide dismutase, glutathione and catalase were also measured. The examined biochemical parameters were increased in the pneumonic sheep, except for cholesterol and high-density lipoprotein cholesterol (HDL-c), which were significantly lower than control group. Acute phase proteins and cytokines were significantly higher in the pneumonic sheep when compared to the healthy sheep. There was a significant increase in the levels of malondialdehyde; however, a significant decrease in the levels of super oxide dismutase, glutathione and catalase was observed. The present study shed the light on the possible pathphysiological role of lipid profile, acute phase proteins (APPs), proinflammatory cytokines and oxidative stress markers in pneumonic pasteurelosis in sheep.

Keywords: acute phase proteins, sheep, pasteurella, interleukins, stress

Procedia PDF Downloads 365
8544 Correlation of Stress and Blood Glucose Level in Working Women from Tribal Region of Navapur, Dist-Nandurbar

Authors: Surekha B. Bansode, Shakeela K. Shareef

Abstract:

Working women have to face complex issues of family life and professional life. Stress is the condition that results from person’s response to physical, emotional or environmental factors. The stress response can cause problems when it overreacts or fails to turn off and reset itself properly. In the present investigation correlation between stress and blood glucose level in working women group and non working women group was studied. Working women when compared with non working women, experienced more physical and psychological stress. An additional increase in fasting blood glucose levels could be attributed to stress and anxiety they undergo at the workplace. This may lead to increase their susceptibility to develop type II Diabetes Mellitus in coming future.

Keywords: blood sugar, nutrition, stress, working women

Procedia PDF Downloads 496
8543 Nanoparticle Induced Neurotoxicity Mediated by Mitochondria

Authors: Nandini Nalika, Suhel Parvez

Abstract:

Nanotechnology has emerged to play a vital role in developing all through the industrial world with an immense production of nanomaterials including nanoparticles (NPs). Many toxicological studies have confirmed that due to unique small size and physico-chemical properties of NPs (1-100nm), they can be potentially hazardous. Metallic NPs of small size have been shown to induce higher levels of cellular oxidative stress and can easily pass through the Blood Brain Barrier (BBB) and significantly accumulate in brain. With the wide applications of titanium dioxide nanoparticles (TNPs) in day-to-day life in form of cosmetics, paints, sterilisation and so on, there is growing concern regarding the deleterious effects of TNPs on central nervous system and mitochondria appear to be important cellular organelles targeted to the pro-oxidative effects of NPs and an important source that contribute significantly for the production of reactive oxygen species after some toxicity or an injury. The aim of our study was to elucidate the effect of TNPs in anatase form with different concentrations (5-50 µg/ml) following with various oxidative stress markers in isolated brain mitochondria as an in vitro model. Oxidative stress was determined by measuring the different oxidative stress markers like lipid peroxidation as well as the protein carbonyl content which was found to be significantly increased. Reduced glutathione content and major glutathione metabolizing enzymes were also modulated signifying the role of glutathione redox cycle in the pathophysiology of TNPs. The study also includes the mitochondrial enzymes (Complex 1, Complex II, complex IV, Complex V ) and the enzymes showed toxicity in a relatively short time due to the effect of TNPs. The study provide a range of concentration that were toxic to the neuronal cells and data pointing to a general toxicity in brain mitochondria by TNPs, therefore, it is in need to consider the proper utilization of NPs in the environment.

Keywords: mitochondria, nanoparticles, brain, in vitro

Procedia PDF Downloads 366
8542 An Increase in Glucose Uptake per se is Insufficient to Induce Oxidative Stress and Vascular Endothelial Cell Dysfunction

Authors: Heba Khader, Victor Solodushko, Brian Fouty

Abstract:

Hyperglycemia is a hallmark of uncontrolled diabetes and causes vascular endothelial dysfunction. An increase in glucose uptake and metabolism by vascular endothelial cells is the presumed trigger for this hyperglycemia-induced dysfunction. Glucose uptake into vascular endothelial cells is mediated largely by Glut-1. Glut-1 is an equilibrative glucose transporter with a Km value of 2 mM. At physiologic glucose concentrations, Glut-1 is almost saturated and, therefore, increasing glucose concentration does not increase glucose uptake unless Glut-1 is upregulated. However, hyperglycemia downregulates Glut-1 and decreases rather than increases glucose uptake in vascular endothelial cells. This apparent discrepancy necessitates further study on the effect of increasing glucose uptake on the oxidative state and function of vascular endothelial cells. To test this, a Tet-on system was generated to conditionally regulate Glut-1 expression in endothelial cells by the addition and removal of doxycycline. Glut-1 overexpression was confirmed by Western blot and radiolabeled glucose uptake measurements. Upregulation of Glut-1 resulted in a 4-fold increase in glucose uptake into endothelial cells as determined by 3H deoxy-D-glucose uptake. Increased glucose uptake through Glut-1 did not induce an oxidative stress nor did it cause endothelial dysfunction in rat pulmonary microvascular endothelial cells determined by monolayer resistance, cell proliferation or advanced glycation end product formation. Increased glucose uptake through Glut-1did not lead to an increase in glucose metabolism, due in part to inhibition of hexokinase in Glut-1 overexpressing cells. In summary, this study demonstrates that increasing glucose uptake and intracellular glucose by overexpression of Glut-1 does not alter the oxidative state of rat pulmonary microvascular endothelial cells or cause endothelial cell dysfunction. These results conflict with the current paradigm that hyperglycemia leads to oxidative stress and endothelial dysfunction in vascular endothelial cells through an increase in glucose uptake.

Keywords: endothelial cells, glucose uptake, Glut1, hyperglycemia

Procedia PDF Downloads 309
8541 Characterization of the Queuine Salvage Pathway From Bacteria in the Human Parasite Entamoeba Histolytica

Authors: Lotem Sarid, Meirav Trebicz-Geffen, Serge Ankri

Abstract:

Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the nucleobase of queuosine, they must obtain it from their diet or gut microbiota. Our previous work investigated the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and defined the enzyme EhTGT responsible for its incorporation into tRNA. To our best knowledge, it is unknown how E. histolytica salvages Q from gut bacteria. We used N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. Next, we examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. When EhDUF2419 expression is silenced, it inhibits Q's conversion to queuine, resulting in a decrease in Q-tRNA levels. We also observed that Q protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the salvaging of queuine from bacteria and for the resistance of the parasite to OS.

Keywords: entamoeba histolytica, epitranscriptomics, gut microbiota, queuine, queuosine, response to oxidative stress, tRNA modification.

Procedia PDF Downloads 94
8540 Response to Comprehensive Stress of Growing Greylag Geese Offered Alternative Fiber Sources

Authors: He Li Wen, Meng Qing Xiang, Li De Yong, Zhang Ya Wei, Ren Li Ping

Abstract:

Stress always exerts some extent adverse effects on the animal production, food safety and quality concerns. Stress is commonly-seen in livestock industry, but there is rare literature focusing on the effects of nutrition stress. What’s more, the research always concentrates on the effect of single stress additionally, there is scarce information about the stress effect on waterfowl like goose as they are commonly thought to be tolerant to stress. To our knowledge, it is not always true. The object of this study was to evaluate the response of growing Greylag geese offered different fiber sources to the comprehensive stress, primarily involving the procedures of fasting, transport, capture, etc. The birds were randomly selected to rear with the diets differing in fiber source, being corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS), respectively. Blood samples designated for the determination of stress status were collected before (pre-stress ) and after (post-stress ) the stressors carried out. No difference (P>0.05) was found on the pre-stress blood parameters of growing Greylags fed alternative fiber sources. Irrespective of the dietary differences, the comprehensive stress decreased (P<0.01) the concentration of SOD and increased (P<0.01) that of CK. Between the dietary treatments, the birds fed CSS had a higher (P<0.05)post-stress concentration of MDA than those offered SECS, along with a similarity to those fed the other two fiber sources. There was no difference (P>0.05) found on the stress response of the birds fed different fiber sources. In conclusion, SOD and CK concentration in blood may be more sensitive in indicating stress status and dietary fiber source exerted no effect on the stress response of growing Greylags. There is little chance to improve the stress status by ingesting different fiber sources.

Keywords: blood parameter, fiber source, Greylag goose, stress

Procedia PDF Downloads 484
8539 Rooibos Extract Antioxidants: In vitro Models to Assess Their Bioavailability

Authors: Ntokozo Dambuza, Maryna Van De Venter, Trevor Koekemoer

Abstract:

Oxidative stress contributes to the pathogenesis of many diseases and consequently antioxidant therapy has attracted much attention as a potential therapeutic strategy. Regardless of the quantities ingested, antioxidants need to reach the diseased tissues at concentrations sufficient to combat oxidative stress. Bioavailability is thus a defining criterion for the therapeutic efficacy of antioxidants. In addition, therapeutic antioxidants must possess biologically relevant characteristics which can target the specific molecular mechanisms responsible for disease related oxidative stress. While many chemical antioxidant assays are available to quantify antioxidant capacity, they relate poorly to the biological environment and provide no information as to the bioavailability. The present comparative study thus aims to characterise green and fermented rooibos extracts, well recognized for their exceptional antioxidant capacity, in terms of antioxidant bioavailability and efficacy in a disease relevant cellular setting. Chinese green tea antioxidant activity was also evaluated. Chemical antioxidant assays (FRAP, DPPH and ORAC) confirmed the potent antioxidant capacity of both green and fermented rooibos, with green rooibos possessing antioxidant activity superior to that of fermented rooibos and Chinese green tea. Bioavailability was assessed using the PAMPA assay and the results indicate that green and fermented rooibos have a permeation coefficient of 5.7 x 10-6 and 6.9 x 10-6 cm/s, respectively. Chinese green tea permeability coefficient was 8.5 x 10-6 cm/s. These values were comparable to those of rifampicin, which is known to have a high permeability across intestinal epithelium with a permeability coefficient of 5 x 10 -6 cm/s. To assess the antioxidant efficacy in a cellular context, U937 and red blood cells were pre-treated with rooibos and Chinese green tea extracts in the presence of a dye DCFH-DA and then exposed to oxidative stress. Green rooibos exhibited highest activity with an IC50 value of 29 μg/ml and 70 μg/ml, when U937 and red blood cells were exposed oxidative stress, respectively. Fermented rooibos and Chinese green tea had IC50 values of 61 μg/ml and 57 μg/ml for U937, respectively, and 221 μg/ml and 405 μg/ml for red blood cells, respectively. These results indicate that fermented and green rooibos extracts were able to permeate the U937 cells and red blood cell membrane and inhibited oxidation of DCFH-DA to a fluorescent DCF within the cells.

Keywords: rooibos, antioxidants, permeability, bioavailability

Procedia PDF Downloads 290
8538 Repositioning Sodium Valproate for Amelioration of Bleomycin-induced Scleroderma: The Role of Oxidative Stress, Transforming Growth Factor Beta-1, and the Mammalian Target of Rapamycin

Authors: Ahmed M. Kabel, Maaly A. Abd Elmaaboud

Abstract:

Scleroderma is one of the connective tissue disorders characterized by skin and systemic fibrosis. Its pathogenesis involves multiple interrelated processes of autoimmunity, vasculopathy, inflammation, and oxidative stress. This study was a trial to explore the possible ameliorative effects of sodium valproate on an experimental model of skin fibrosis induced by bleomycin. Forty male BALB/c mice were divided into four equal groups as follows: control group; bleomycin group; bleomycin + sodium valproate group, and sodium valproate group. Mice were assessed for their body weight every four days throughout the whole study. Skin tissues were used to evaluate the oxidative stress parameters, transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin 15, and mammalian target of rapamycin (mTOR). Skin fibrosis was evaluated by measuring dermal thickness and staining the skin tissues with Masson trichrome stain. Also, the skin tissues were immunostained with alpha smooth muscle actin (α-SMA). Administration of sodium valproate to bleomycin-treated mice resulted in the restoration of the body weight with a significant decrease in the dermal thickness, amelioration of oxidative stress, suppression of TGF-β1 and mTOR expression, and significant reduction of the percentage of α-SMA immunostaining and the proinflammatory cytokine levels compared to mice treated with bleomycin alone. In conclusion, sodium valproate has an antifibrotic effect on skin fibrosis which may represent a beneficial therapeutic modality for the management of scleroderma.

Keywords: scleroderma, bleomycin, sodium valproate, skin fibrosis

Procedia PDF Downloads 59
8537 Sinapic Acid Attenuation of Cyclophosphamide-Induced Liver Toxicity in Mice by Modulating Oxidative Stress, Nf-κB, and Caspase-3

Authors: Shiva Rezaei, Seyed Jalal Hosseinimehr, Abbasali Karimpour Malekshah, Mansooreh Mirzaei, Fereshteh Talebpour Amiri, Mehryar Zargari

Abstract:

Objective(s): Cyclophosphamide (CP), as an antineoplastic drug, is widely used in cancer patients, and liver toxicity is one of its complications. Sinapic acid (SA), as a natural phenylpropanoid, has antioxidant, anti-inflammatory, and anti-cancer properties. Materials and Methods: The purpose of the current study was to determine the protective effect of SA versus CP-induced liver toxicity. In this research, BALB/c mice were treated with SA (5 and 10 mg/kg) orally for one week, and CP (200 mg/kg) was injected on day 3 of the study. Oxidative stress markers, serum liver-specific enzymes, histopathological features, caspase-3, and nuclear factor kappa-B cells were then checked. Results: CP induced hepatotoxicity in mice and showed structural changes in liver tissue. CP significantly increased liver enzymes and lipid peroxidation and decreased glutathione. The immunoreactivity of caspase-3 and nuclear factor kappa-B cells was significantly increased. Administration of SA significantly maintained histochemical parameters and liver function enzymes in mice treated with CP. Immunohistochemical examination showed SA reduced apoptosis and inflammation. Conclusion: The data confirmed that SA with anti-apoptotic, anti-oxidative, and anti-inflammatory activities was able to preserve CP-induced liver injury in mice.

Keywords: apoptosis, cyclophosphamide, liver injury, inflammation, oxidative stress, sinapic acid

Procedia PDF Downloads 20
8536 Contribution of mTOR to Oxidative/Nitrosative Stress via NADPH Oxidase System Activation in Zymosan-Induced Systemic Inflammation in Rats

Authors: Seyhan Sahan-Firat, Meryem Temiz-Resitoglu, Demet Sinem Guden, Sefika Pinar Kucukkavruk, Bahar Tunctan, Ayse Nihal Sari, Zumrut Kocak

Abstract:

We hypothesized that mTOR inhibition may prevent the multiple organ failures following severe multiple tissue injury associated with increased NADPH oxidase system activity occur in zymosan-induced systemic inflammation. Therefore, we investigated the role of mTOR in oxidative/nitrosative stress associated with increase in NADPH oxidase activity in zymosan-induced systemic inflammation model in rats. Male Wistar rats received saline (4 ml/kg, i.p.) and zymosan (500 mg/kg, i.p.) at time 0. Saline, or zymosan-treated rats were given rapamycin (1 mg/kg, i.p.) 1 h after saline or zymosan injections. Rats were sacrified 4 h after zymosan challenge and kidney, heart, thoracic aorta, and superior mesenteric artery were collected. NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels were measured in tissue samples. Zymosan administration caused an increase in NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels in kidney, heart, thoracic aorta, and superior mesenteric artery. These changes caused by zymosan reversed by rapamycin, a selective mTOR inhibitor. Rapamycin alone had no effect on the parameters measured. Our results demonstrated that zymosan-induced oxidative/nitrosative stress presumably due to enhanced activity of NADPH oxidase, expression of p22phox, gp91phox, and p47phox and production of peroxynitrite were mediated by mTOR. [This work was financially supported by Research Foundation of Mersin University (2016-2-AP3-1900)].

Keywords: oxidative stress, mTOR, nitrosative stress, zymosan

Procedia PDF Downloads 293