Search results for: brown algae
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 493

Search results for: brown algae

373 Fatty Acid Translocase (Cd36), Energy Substrate Utilization, and Insulin Signaling in Brown Adipose Tissue in Spontaneously Hypertensive Rats

Authors: Michal Pravenec, Miroslava Simakova, Jan Silhavy

Abstract:

Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Recently, using systems genetics approach in the BAT from BXH/HXB recombinant inbred strains, derived from the SHR (spontaneously hypertensive rat) and BN (Brown Norway) progenitors, we identified Cd36 (fatty acid translocase) as the hub gene of co-expression module associated with BAT relative weight and function. An important aspect of BAT biology is to better understand the mechanisms regulating the uptake and utilization of fatty acids and glucose. Accordingly, BAT function in the SHR that harbors mutant nonfunctional Cd36 variant (hereafter referred to as SHR-Cd36⁻/⁻) was compared with SHR transgenic line expressing wild type Cd36 under control of a universal promoter (hereafter referred to as SHR-Cd36⁺/⁺). BAT was incubated in media containing insulin and 14C-U-glucose alone or 14C-U-glucose together with palmitate. Incorporation of glucose into BAT lipids was significantly higher in SHR-Cd36⁺/⁺ versus SHR-Cd36⁻/⁻ rats when incubation media contained glucose alone (SHR-Cd36⁻/⁻ 591 ± 75 vs. SHR-Cd36⁺/⁺ 1036 ± 135 nmol/gl./2h; P < 0.005). Adding palmitate into incubation media had no effect in SHR-Cd36⁻/⁻ rats but significantly reduced glucose incorporation into BAT lipids in SHR-Cd36⁺/⁺ (SHR-Cd36⁻/⁻ 543 ± 55 vs. SHR-Cd36⁺/⁺ 766 ± 75 nmol/gl./2h; P < 0.05 denotes significant Cd36 x palmitate interaction determined by two-way ANOVA). This Cd36-dependent reduced glucose uptake in SHR-Cd36⁺/⁺ BAT was likely secondary to increased palmitate incorporation and utilization due to the presence of wild type Cd36 fatty acid translocase in transgenic rats. This possibility is supported by increased incorporation of 14C-U-palmitate into BAT lipids in the presence of both palmitate and glucose in incubation media (palmitate alone: SHR-Cd36⁻/⁻ 870 ± 21 vs. SHR-Cd36⁺/⁺ 899 ± 42; glucose+palmitate: SHR-Cd36⁻/⁻ 899 ± 47 vs. SHR-Cd36⁺/⁺ 1460 ± 111 nmol/palm./2h; P < 0.05 denotes significant Cd36 x glucose interaction determined by two-way ANOVA). It is possible that addition of glucose into the incubation media increased palmitate incorporation into BAT lipids in SHR-Cd36⁺/⁺ rats because of glucose availability for glycerol phosphate production and increased triglyceride synthesis. These changes in glucose and palmitate incorporation into BAT lipids were associated with significant differential expression of Irs1, Irs2, Slc2a4 and Foxo1 genes involved in insulin signaling and glucose metabolism only in SHR-Cd36⁺/⁺ rats which suggests Cd36-dependent effects on insulin action. In conclusion, these results provide compelling evidence that Cd36 plays an important role in BAT insulin signaling and energy substrate utilization.

Keywords: brown adipose tissue, Cd36, energy substrate utilization, insulin signaling, spontaneously hypertensive rat

Procedia PDF Downloads 117
372 The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State

Authors: Rafiu O. Sanni, Abayomi O. Olajuyigbe, Nelson R. Osungbemiro, Rotimi F. Olaniyan

Abstract:

The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott.

Keywords: aquatic plants, aquatic macrophytes, algae, Owena river

Procedia PDF Downloads 538
371 Improvement of Oxidative Stability of Edible Oil by Microencapsulation Using Plant Proteins

Authors: L. Le Priol, A. Nesterenko, K. El Kirat, K. Saleh

Abstract:

Introduction and objectives: Polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 are widely recognized as being beneficial to the health and normal growth. Unfortunately, due to their highly unsaturated nature, these molecules are sensitive to oxidation and thermic degradation leading to the production of toxic compounds and unpleasant flavors and smells. Hence, it is necessary to find out a suitable way to protect them. Microencapsulation by spray-drying is a low-cost encapsulation technology and most commonly used in the food industry. Many compounds can be used as wall materials, but there is a growing interest in the use of biopolymers, such as proteins and polysaccharides, over the last years. The objective of this study is to increase the oxidative stability of sunflower oil by microencapsulation in plant protein matrices using spray-drying technique. Material and methods: Sunflower oil was used as a model substance for oxidable food oils. Proteins from brown rice, hemp, pea, soy and sunflower seeds were used as emulsifiers and microencapsulation wall materials. First, the proteins were solubilized in distilled water. Then, the emulsions were pre-homogenized using a high-speed homogenizer (Ultra-Turrax) and stabilized by using a high-pressure homogenizer (HHP). Drying of the emulsion was performed in a Mini Spray Dryer. The oxidative stability of the encapsulated oil was determined by performing accelerated oxidation tests with a Rancimat. The size of the microparticles was measured using a laser diffraction analyzer. The morphology of the spray-dried microparticles was acquired using environmental scanning microscopy. Results: Pure sunflower oil was used as a reference material. Its induction time was 9.5 ± 0.1 h. The microencapsulation of sunflower oil in pea and soy protein matrices significantly improved its oxidative stability with induction times of 21.3 ± 0.4 h and 12.5 ± 0.4 h respectively. The encapsulation with hemp proteins did not significantly change the oxidative stability of the encapsulated oil. Sunflower and brown rice proteins were ineffective materials for this application, with induction times of 7.2 ± 0.2 h and 7.0 ± 0.1 h respectively. The volume mean diameter of the microparticles formulated with soy and pea proteins were 8.9 ± 0.1 µm and 16.3 ± 1.2 µm respectively. The values for hemp, sunflower and brown rice proteins could not be obtained due to the agglomeration of the microparticles. ESEM images showed smooth and round microparticles with soy and pea proteins. The surfaces of the microparticles obtained with sunflower and hemp proteins were porous. The surface was rough when brown rice proteins were used as the encapsulating agent. Conclusion: Soy and pea proteins appeared to be efficient wall materials for the microencapsulation of sunflower oil by spray drying. These results were partly explained by the higher solubility of soy and pea proteins in water compared to hemp, sunflower, and brown rice proteins. Acknowledgment: This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Keywords: biopolymer, edible oil, microencapsulation, oxidative stability, release, spray-drying

Procedia PDF Downloads 114
370 Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study

Authors: M. Jerold, V. Sivasubramanian

Abstract:

This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater.

Keywords: biosorption, Ulva lactuca, wastewater, malachite green, isotherm, kinetics

Procedia PDF Downloads 128
369 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels

Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain

Abstract:

The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.

Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde

Procedia PDF Downloads 230
368 Phytoplankton of the Atlantic Ocean off Lagos

Authors: Ikenna Charles Onyema, Prince Tolut Bako

Abstract:

A study was carried out in the Atlantic Ocean off the Lighthouse Beach, Lagos. There were monthly and spatial variations in physical and chemical characteristics of the neritic ocean (August-December, 2014). Mean and standard deviation values for air temperature were 27. 67, ± 2.98 oC, water temperature (28.37 ± 1.88), pH (7.85 ± 0.17), Conductivity (44738.75 ± 6262.76 µS/cm), Total dissolved solids (29236.71 ± 4273.30 mg/L), Salinity (27.11 ± 3.91 ‰), Alkalinity (126.99 ± 42.81 mg/L) and Chloride (15056. 67 ± 2165.78 mg/L). Higher estimates were recorded in the dry than wet months for these characteristics. On the other hand, reducing values were recorded for Acidity (2.34 ± 0.63 mg/L), Total hardness (4711.98 ± 691.50 mg/L), Phosphate (1.1 ± 0.78 mg/L), Sulphate (2601.99 ± 447.04 mg/L) and Nitrate (0.12 ± 0.06 mg/L). Values for Total suspended solids and Biological oxygen demand values were low ( < 1mg/L). Twenty-one species of phytoplankton were recorded. Diatoms recorded 80.92% and were the dominant group. Hemidiscus cuneiformis, Coscinodiscus centralis, Coscinodiscus lineatus, Coscinodiscus radiatus and Oscillatoria limosa were more frequently occurring species. Biddulphia sinensis and four species of Ceratium, were representatives of the dry season. The dry season also recorded comparatively higher individuals of phytoplankton than the wet season. Spirogyra sp. (green algae) appeared only in the wet season. Species abundance (N) was highest in December at Station 1 (13.15%) (dry season) and lowest in August (wet season) at Station 3 (2.96%). The physico-chemical factors and phytoplankton reflected a tropical unpolluted neritic oceanic environment.

Keywords: sea, physico-chemistry, micro-algae, lighthouse beach

Procedia PDF Downloads 189
367 Effects of Vitamin E and Vitamin on Growth, Survival and Some Haematological and Immunological Parameters of Caspian Brown Trout, Salmo trutta caspius Juveniles

Authors: Hossein Khara, Mahmoud Sayyadborani, Mohammad Sayyadborani

Abstract:

In the present study, we examined the effects of different dietary levels of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) and their combinations on growth, survival and some haematological and immunological parameters of Caspian brown trout, Salmo trutta caspius juveniles. 15 experimental treatments and one control group with three replicates were considered for experiment. The experimental treatments were fish fed by experimental diets containing different levels of Vit C and E as follow: T1: Vit E (20 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T2: Vit E (30 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T3: Vit E (40 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T4: Vit E (20 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T5: Vit E (30 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T6: Vit E (40 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T7: Vit E (20 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T8: Vit E (30 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T9: Vit E (40 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T10: Vit C (100 mg.kg diet -1), T11: Vit C (200 mg.kg diet -1), T12: Vit C (300 mg.kg diet -1), T13: Vit E (20 mg.kg diet -1), T14: Vit E (30 mg.kg diet -1) T15: Vit E (40 mg.kg diet -1). Also a non-vitamin supplemented was considered as control group. Growth parameters were measured monthly and serum parameters assayed at the end of the experiment. According to our results, Vit C and E improved survival and growth parameters including specific growth rate (SGR), weight gain percent (WG%) and biomass. The highest values of these parameters obtained in T8, T9 and T8 respectively. The lowest FCR obtained in T8. The haematological parameters including red blood cells (RBCs), white blood cells (WBCs), haematocrit (Hct) and haemoglobin (Hb) were higher in vitamin treated groups than control group with highest values in T8. In T13, WBC values were higher compared to other experimental groups. The immunological parameters including lysozyme activity, Immunoglobulin (IgM) and total immunoglobulin (TIg) were significantly higher in vitamin supplemented groups than in control group. In this regard the highest values of these parameters were found in T12. The lowest values of TIg and lysozyme activity were observed in control group and fish fed by only vitamin E i.e. T13, T14 and T15. In conclusion, our results show that Vit C and E in combination or only can improve growth, survival, haematological and immunological indices of Caspian brown trout.

Keywords: vitamins E, vitamins C, growth, survival, haematological parameters, immunological parameters

Procedia PDF Downloads 316
366 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study

Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf

Abstract:

Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.

Keywords: bioeconomy, decarbonisation, energy footprint, microalgae

Procedia PDF Downloads 112
365 Removal of Nutrients from Sewage Using Algal Photo-Bioreactor

Authors: Purnendu Bose, Jyoti Kainthola

Abstract:

Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P.

Keywords: nutrients, algae, photo, bioreactor

Procedia PDF Downloads 186
364 Oil Extraction from Microalgae Dunalliela sp. by Polar and Non-Polar Solvents

Authors: A. Zonouzi, M. Auli, M. Javanmard Dakheli, M. A. Hejazi

Abstract:

Microalgae are tiny photosynthetic plants. Nowadays, microalgae are being used as nutrient-dense foods and sources of fine chemicals. They have significant amounts of lipid, carotenoids, vitamins, protein, minerals, chlorophyll, and pigments. Oil extraction from algae is a hotly debated topic currently because introducing an efficient method could decrease the process cost. This can determine the sustainability of algae-based foods. Scientific research works show that solvent extraction using chloroform/methanol (2:1) mixture is one of the efficient methods for oil extraction from algal cells, but both methanol and chloroform are toxic solvents, and therefore, the extracted oil will not be suitable for food application. In this paper, the effect of two food grade solvents (hexane and hexane/ isopropanol) on oil extraction yield from microalgae Dunaliella sp. was investigated and the results were compared with chloroform/methanol (2:1) extraction yield. It was observed that the oil extraction yield using hexane, hexane/isopropanol (3:2) and chloroform/methanol (2:1) mixture were 5.4, 13.93, and 17.5 (% w/w, dry basis), respectively. The fatty acid profile derived from GC illustrated that the palmitic (36.62%), oleic (18.62%), and stearic acids (19.08%) form the main portion of fatty acid composition of microalgae Dunalliela sp. oil. It was concluded that, the addition of isopropanol as polar solvent could increase the extraction yield significantly. Isopropanol solves cell wall phospholipids and enhances the release of intercellular lipids, which improves accessing of hexane to fatty acids.

Keywords: fatty acid profile‎, microalgae‎, oil extraction‎, polar solvent‎

Procedia PDF Downloads 343
363 Sustainable Production of Algae through Nutrient Recovery in the Biofuel Conversion Process

Authors: Bagnoud-Velásquez Mariluz, Damergi Eya, Grandjean Dominique, Frédéric Vogel, Ludwig Christian

Abstract:

The sustainability of algae to biofuel processes is seriously affected by the energy intensive production of fertilizers. Large amounts of nitrogen and phosphorus are required for a large-scale production resulting in many cases in a negative impact of the limited mineral resources. In order to meet the algal bioenergy opportunity it appears crucial the promotion of processes applying a nutrient recovery and/or making use of renewable sources including waste. Hydrothermal (HT) conversion is a promising and suitable technology for microalgae to generate biofuels. Besides the fact that water is used as a “green” reactant and solvent and that no biomass drying is required, the technology offers a great potential for nutrient recycling. This study evaluated the possibility to treat the water HT effluent by the growth of microalgae while producing renewable algal biomass. As already demonstrated in previous works by the authors, the HT aqueous product besides having N, P and other important nutrients, presents a small fraction of organic compounds rarely studied. Therefore, extracted heteroaromatic compounds in the HT effluent were the target of the present research; they were profiled using GC-MS and LC-MS-MS. The results indicate the presence of cyclic amides, piperazinediones, amines and their derivatives. The most prominent nitrogenous organic compounds (NOC’s) in the extracts were carefully examined by their effect on microalgae, namely 2-pyrrolidinone and β-phenylethylamine (β-PEA). These two substances were prepared at three different concentrations (10, 50 and 150 ppm). This toxicity bioassay used three different microalgae strains: Phaeodactylum tricornutum, Chlorella sorokiniana and Scenedesmus vacuolatus. The confirmed IC50 was for all cases ca. 75ppm. Experimental conditions were set up for the growth of microalgae in the aqueous phase by adjusting the nitrogen concentration (the key nutrient for algae) to fit that one established for a known commercial medium. The values of specific NOC’s were lowered at concentrations of 8.5 mg/L 2-pyrrolidinone; 1mg/L δ-valerolactam and 0.5 mg/L β-PEA. The growth with the diluted HT solution was kept constant with no inhibition evidence. An additional ongoing test is addressing the possibility to apply an integrated water cleanup step making use of the existent hydrothermal catalytic facility.

Keywords: hydrothermal process, microalgae, nitrogenous organic compounds, nutrient recovery, renewable biomass

Procedia PDF Downloads 383
362 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 215
361 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity

Authors: William Middleton, Nodumo Zulu, Sue Harrison

Abstract:

Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.

Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design

Procedia PDF Downloads 58
360 Growing Sorghum Varieties with Potential of Fodder and Biofuel Crops, with Potential of Two Harvest in One Year

Authors: Farah Jafarpisheh, John Hutson, Howard Fallowfield

Abstract:

Growing Sorghum varieties, with the potential of the animal food source, by using the treated wastewater from High Rate Algae Ponds (HRAPs) is an attractive subject. For the first time, in South Australia, Sorghum Earthnote variety one (SE1) has been grown using the wastewater from HRAPs. In this study, after the first harvest, the roots left in the soil. After a short period of time, sorghum started to regrow again, which can increase the value of planting sorghum by using the wastewater. This study demonstrates the higher amount of green biomass with the potential of animal food source after the second harvest. Different parameters, including height(mm), number of leaves and tiller, Brix percentage, fresh and dry leaf weight(g), total top fresh weight(g), stem and seed dry and fresh weight(g) have been measured in the field after first and second harvest. The results demonstrated the higher height, number of tiller, and diameter after the second harvest. Number of leaves and leaves fresh weight and total top weight increased by 6 and 10 times, respectively. Brix percentage increased by 2 times. In the first harvest, no seeds harvested, while in the second harvest, 134 g seeds harvested. This sorghum variety (SE1) showed the acceptable green biomass, especially after the second harvest. This property will add to the value of sorghum in this condition, as it will not need extra fertilizer and labor work for seed planting.

Keywords: energy, high rate algae ponds, HRAPs, Sorghum, waste water

Procedia PDF Downloads 80
359 Pathomorphological Features of Lungs from Brown Hares Infected with Parasites

Authors: Mariana Panayotova-Pencheva, Anetka Trifonova, Vassilena Dakova

Abstract:

790 lungs from brown hares (Lepus europeus L.) from different regions of Bulgaria were investigated during the period 2009-2017. The parasitological status and pathomorphological features in the lungs were recorded. The following parasite species were established: one nematode - Protostrongylus tauricus (7.59% prevalence), one tapeworm – larva of Taenia pisiformis Cysticercus pisiformis (3.04% prevalence) and one arthropod – larva of Linguatula serrata – Pentastomum dentatum (0.89% prevalence). Macroscopic lesions in the lungs were different depending on the causative agents. The infections with C. pisiformis and P. dentatum were attended with small, mainly superficial changes in the lungs. Protostrongylid infections were connected with different in appearance and burden macroscopic changes. In 77.7%, they were nodular, and in the rest of cases, they diffuse. The consistency of the lesions was compact. In most of the cases, alterations were grey in colour, rarely were dark-red or marble-like. In 91.7% of these cases, they were spread on the apical parts of large lung lobes. In 36.7% middle parts of the large lung lobes, and, in 26.7% small lung lobes, were also affected. The small lung lobes were never independently infected.

Keywords: Cysticercus pisiformis, Lepus europeus, lung lesions, Pentastomum dentatum, Protostrongylus tauricus

Procedia PDF Downloads 185
358 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 405
357 Locally Produced Solid Biofuels – Carbon Dioxide Emissions and Competitiveness with Conventional Ways of Individual Space Heating

Authors: Jiri Beranovsky, Jaroslav Knapek, Tomas Kralik, Kamila Vavrova

Abstract:

The paper deals with the results of research focused on the complex aspects of the use of intentionally grown biomass on agricultural land for the production of solid biofuels as an alternative for individual household heating. . The study primarily deals with the analysis of CO2 emissions of the logistics cycle of biomass for the production of energy pellets. Growing, harvesting, transport and storage are evaluated in the pellet production cycle. The aim is also to take into account the consumption profile during the year in terms of heating of common family houses, which are typical end-market segment for these fuels. It is assumed that in family houses, bio-pellets are able to substitute typical fossil fuels, such as brown coal and old wood burning heating devices and also electric boilers. One of the competing technology with the pellets are heat pumps. The results show the CO2 emissions related with considered fuels and technologies for their utilization. Comparative analysis is aimed biopellets from intentionally grown biomass, brown coal, natural gas and electricity used in electric boilers and heat pumps. Analysis combines CO2 emissions related with individual fuels utilization with costs of these fuels utilization. Cost of biopellets from intentionally grown biomass is derived from the economic models of individual energy crop plantations. At the same time, the restrictions imposed by EU legislation on Ecodesign's fuel and combustion equipment requirements and NOx emissions are discussed. Preliminary results of analyzes show that to achieve the competitiveness of pellets produced from specifically grown biomass, it would be necessary to either significantly ecological tax on coal (from about 0.3 to 3-3.5 EUR/GJ), or to multiply the agricultural subsidy per area. In addition to the Czech Republic, the results are also relevant for other countries, such as Bulgaria and Poland, which also have a high proportion of solid fuels for household heating.

Keywords: CO2 emissions, heating costs, energy crop, pellets, brown coal, heat pumps, economical evaluation

Procedia PDF Downloads 82
356 Analytical Solutions for Tunnel Collapse Mechanisms in Circular Cross-Section Tunnels under Seepage and Seismic Forces

Authors: Zhenyu Yang, Qiunan Chen, Xiaocheng Huang

Abstract:

Reliable prediction of tunnel collapse remains a prominent challenge in the field of civil engineering. In this study, leveraging the nonlinear Hoek-Brown failure criterion and the upper-bound theorem, an analytical solution for the collapse surface of shallowly buried circular tunnels was derived, taking into account the coupled effects of surface loads and pore water pressures. Initially, surface loads and pore water pressures were introduced as external force factors, equating the energy dissipation rate to the external force, yielding our objective function. Subsequently, the variational method was employed for optimization, and the outcomes were juxtaposed with previous research findings. Furthermore, we utilized the deduced equation set to systematically analyze the influence of various rock mass parameters on collapse shape and extent. To validate our analytical solutions, a comparison with prior studies was executed. The corroboration underscored the efficacy of our proposed methodology, offering invaluable insights for collapse risk assessment in practical engineering applications.

Keywords: tunnel roof stability, analytical solution, hoek–brown failure criterion, limit analysis

Procedia PDF Downloads 54
355 Bioavailability of Iron in Some Selected Fiji Foods using In vitro Technique

Authors: Poonam Singh, Surendra Prasad, William Aalbersberg

Abstract:

Iron the most essential trace element in human nutrition. Its deficiency has serious health consequences and is a major public health threat worldwide. The common deficiencies in Fiji population reported are of Fe, Ca and Zn. It has also been reported that 40% of women in Fiji are iron deficient. Therefore, we have been studying the bioavailability of iron in commonly consumed Fiji foods. To study the bioavailability it is essential to assess the iron contents in raw foods. This paper reports the iron contents and its bioavailability in commonly consumed foods by multicultural population of Fiji. The food samples (rice, breads, wheat flour and breakfast cereals) were analyzed by atomic absorption spectrophotometer for total iron and its bioavailability. The white rice had the lowest total iron 0.10±0.03 mg/100g but had high bioavailability of 160.60±0.03%. The brown rice had 0.20±0.03 mg/100g total iron content but 85.00±0.03% bioavailable. The white and brown breads showed the highest iron bioavailability as 428.30±0.11 and 269.35 ±0.02%, respectively. The Weetabix and the rolled oats had the iron contents 2.89±0.27 and 1.24.±0.03 mg/100g with bioavailability of 14.19±0.04 and 12.10±0.03%, respectively. The most commonly consumed normal wheat flour had 0.65±0.00 mg/100g iron while the whole meal and the Roti flours had 2.35±0.20 and 0.62±0.17 mg/100g iron showing bioavailability of 55.38±0.05, 16.67±0.08 and 12.90±0.00%, respectively. The low bioavailability of iron in certain foods may be due to the presence of phytates/oxalates, processing/storage conditions, cooking method or interaction with other minerals present in the food samples.

Keywords: iron, bioavailability, Fiji foods, in vitro technique, human nutrition

Procedia PDF Downloads 492
354 An Emergence of Pinus taeda Needle Defoliation and Tree Mortality in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Pinus taeda, commonly known as loblolly pine, is a crucial timber species native to the southeastern USA. An emerging problem has been encountered for the past few years, which is better to be known as loblolly pine needle defoliation (LPND), which is threatening the ecological health of southeastern forests and economic vitality of the region’s timber industry. Currently, more than 1000 hectares of loblolly plantations in Alabama are affected with similar symptoms and have created concern among southeast landowners and forest managers. However, it is still uncertain whether LPND results from one or the combination of several fungal pathogens. Therefore, the objectives of the study were to identify and characterize the fungi associated with LPND in the southeastern USA and document the damage being done to loblolly pine as a result of repeated defoliation. Identification of fungi was confirmed using classical morphological methods (microscopic examination of the infected needles), conventional and species-specific priming (SSPP) PCR, and ITS sequencing. To date, 17 species of fungi, either cultured from pine needles or formed fruiting bodies on pine needles, were identified based on morphology and genetic sequence data. Among them, brown-spot pathogen Lecanostica acicola has been frequently recovered from pine needles in both spring and summer. Moreover, Ophistomatoid fungi such as Leptographium procerum, L. terebrantis are associated with pine decline have also been recovered from root samples of the infected stands. Trees have been increasingly and repeatedly chlorotic and defoliated from 2019 to 2020. Based on morphological observations and molecular data, emerging loblolly pine needle defoliation is due in larger part to the brown-spot pathogen L. acoicola followed by pine decline pathogens L. procerum and L. terebrantis. Root pathogens were suspected to emerge later, and their cumulative effects contribute to the widespread mortality of the trees. It is more likely that longer wet spring and warmer temperatures are favorable to disease development and may be important in the disease ecology of LPND. Therefore, the outbreak of the disease is assumed to be expanded over a large geographical area in a changing climatic condition.

Keywords: brown-spot fungi, emerging disease, defoliation, loblolly pine

Procedia PDF Downloads 108
353 Effect of Seasons and Storage Methods on Seed Quality of Slender Leaf (Crotalaria Sp.) in Western Kenya

Authors: Faith Maina

Abstract:

Slender leaf (Crotalaria brevidens and Crotalaria ochroleuca), African indigenous vegetables, are an important source of nutrients, income and traditional medicines in Kenya. However, their production is constrained by poor quality seed, due to lack of standardized agronomic and storage practices. Factors that affect the quality of seed in storage include the duration of storage, seed moisture, temperature, relative humidity, oxygen pressure during storage, diseases, and pests. These factors vary with the type of storage method used. The aim of the study was to investigate the effect of various storage methods on seed quality of slender leaf and recommend the best methods of seed storage to the farmers in Western Kenya. Seeds from various morphotypes of slender leaf that had high germination percentage (90%) were stored in pots, jars, brown paper bags and polythene bags in Kakamega and Siaya. Other seeds were also stored in a freezer at the University of Eldoret. In Kakamega County average room temperature was 23°C and relative humidity was 85% during the storage period of May to July 2006. Between December and February 2006 the average room temperature was 26°C while relative humidity was 80% in the same county. In Siaya County, the average room temperature was 25°C and relative humidity was 80% during storage period of May to July 2006. In the same county, the average temperature was 28°C and relative humidity 65% during the period of December and February 2006. Storage duration was 90 days for each season. Seed viability and vigour, was determined for each storage method. Data obtained from storage experiments was subjected to ANOVA and T-tests using Statistical Analysis Software (SAS). Season of growth and storage methods significantly influenced seed quality in Kakamega and Siaya counties. Seeds from the long rains season had higher seed quality than those grown during the short rains season. Generally, seeds stored in pots, brown paper bags, jars and freezer had higher seed quality than those stored in polythene bags. It was concluded that in order to obtain high-quality seeds farmers should store slender leaf seeds in pots or brown paper bags or plastic jars or freezer.

Keywords: Crotalaria sp, seed, quality, storage

Procedia PDF Downloads 172
352 Antioxidative, Anticholinesterase and Anti-Neuroinflammatory Properties of Malaysian Brown and Green Seaweeds

Authors: Siti Aisya Gany, Swee Ching Tan, Sook Yee Gan

Abstract:

Diminished antioxidant defense or increased production of reactive oxygen species in the biological system can result in oxidative stress which may lead to various neurodegenerative diseases including Alzheimer’s disease (AD). Microglial activation also contributes to the progression of AD by producing several pro-inflammatory cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2). Oxidative stress and inflammation have been reported to be possible pathophysiological mechanisms underlying AD. In addition, the cholinergic hypothesis postulates that memory impairment in patient with AD is also associated with the deficit of cholinergic function in the brain. Although a number of drugs have been approved for the treatment of AD, most of these synthetic drugs have diverse side effects and yield relatively modest benefits. Marine algae have great potential in pharmaceutical and biomedical applications as they are valuable sources of bioactive properties such as anti-coagulation, anti-microbial, anti-oxidative, anti-cancer and anti-inflammatory. Hence, this study aimed to provide an overview of the properties of Malaysian seaweeds (Padina australis, Sargassum polycystum and Caulerpa racemosa) in inhibiting oxidative stress, neuroinflammation and cholinesterase enzymes. All tested samples significantly exhibit potent DPPH and moderate Superoxide anion radical scavenging ability (P<0.05). Hexane and methanol extracts of S. polycystum exhibited the most potent radical scavenging ability with IC50 values of 0.1572 ± 0.004 mg/ml and 0.8493 ± 0.02 for DPPH and ABTS assays, respectively. Hexane extract of C. racemosa gave the strongest superoxide radical inhibitory effect (IC50 of 0.3862± 0.01 mg/ml). Most seaweed extracts significantly inhibited the production of cytokine (IL-6, IL-1 β, TNFα) and NO in a concentration-dependent manner without causing significant cytotoxicity to the lipopolysaccharide (LPS)-stimulated microglia cells (P<0.05). All extracts suppressed cytokine and NO level by more than 80% at the concentration of 0.4mg/ml. In addition, C. racemosa and S. polycystum also showed anti-acetylcholinesterase activities with the IC50 values ranging from 0.086-0.115 mg/ml. Moreover, C. racemosa and P. australis were also found to be active against butyrylcholinesterase with IC50 values ranging from 0.118-0.287 mg/ml.

Keywords: anti-cholinesterase, anti-oxidative, neuroinflammation, seaweeds

Procedia PDF Downloads 637
351 Interaction of Chemical, Microbiological and Ecological Aspects in the Brown Alga Zonaria Tournefortii

Authors: Sonia Hamiche, Naima Bouzidi, Mohamed Reda Zahi, Yasmina Daghbouche, Abdelmalek Badis, Mohamed El Hattab

Abstract:

This study was carried out on the brown alga Zonaria tourfortii harvested on the central coast of Algeria. The chemical study enabled the characterization of phenolic compounds, mainly acyl phloroglucinol and chromone metabolites. The study isolated a significant quantity of all-cis-5,8,11,14,17 eicosapentanoic acid (EPA). Based on a literature review, we have proposed a biosynthetic pathway leading from EPA to phenolic metabolites. Bacterial screening from the algal surface led to isolate 30 bacterial strains, including 26 Gram+ containing the Staphylococcus and Bacillus genus, and 4 Gram- containing the Acinetobacter and Enterobacteracea genus. In terms of activity profiles, strain S13 (identified as Bacillus amyloliquefaciens based on 16S rRNA technique) proved highly interesting inhibitory activities against target germs, as well as its production of diffusible and volatile compounds. Bacterial cells from the B. amyloliquefaciens S13 strain were used to recover a volatile fraction. Analysis was carried out by gas chromatography-mass spectrometry. The main volatile compounds identified were: 13-epi-manoyl oxide (29.39%), manool (17.39%), 15,16-dinorlabd-8(20)-en-13-one (13.17%), labda-8(17),13Z-dien-15-ol (9. 51%) and 3-acetoxy-13 epimanoyl oxide (5.26%) belonging to the labdane class of diterpenes, the latter having never been described in the category of microbial volatile organic compounds. Ecological aspects were discussed.

Keywords: chemical analysis, acylphloroglucinols, phenolic compounds, microbial volatiles, Zonaria tournefortii

Procedia PDF Downloads 10
350 Effects of a Dwarfing Gene sd1-d (Dee-Geo-Woo-Gen Dwarf) on Yield and Related Traits in Rice: Preliminary Report

Authors: M. Bhattarai, B. B. Rana, M. Kamimukai, I. Takamure, T. Kawano, M. Murai

Abstract:

The sd1-d allele at the sd1 locus on chromosome 1, originating from Taiwanese variety Dee-geo-woo-gen, has been playing important role for developing short-culm and lodging-resistant indica varieties such as IR36 in rice. The dominant allele SD1 for long culm at the locus is differentiated into SD1-in and SD1-ja which are harbored in indica and japonica subspecies’s, respectively. The sd1-d of an indica variety IR36 was substituted with SD1-in or SD1-ja by recurrent backcrosses of 17 times with IR36, and two isogenic tall lines regarding the respective dominant alleles were developed by using an indica variety IR5867 and a japonica one ‘Koshihikari’ as donors, which were denoted by '5867-36' and 'Koshi-36', respectively. The present study was conducted to examine the effect of sd1-d on yield and related traits as compared with SD1-in and SD1-ja, by using the two isogenic tall lines. Seedlings of IR36 and the two isogenic lines were transplanted on an experimental field of Kochi University, by the planting distance of 30 cm × 15 cm with two seedlings per hill, on May 3, 2017. Chemical fertilizers were supplied by basal application and top-dressing at a rate of 8.00, 6.57 and 7.52 g/m², respectively, for N, P₂O₅ and K₂O in total. Yield, yield components, and other traits were measured. Culm length (cm) was in the order of 5867-36 (101.9) > Koshi-36 (80.1) > IR36 (60.0), where '>' indicates statistically significant difference at the 5% level. Accordingly, sd1-d reduced culm by 41.9 and 20.1 cm, compared with SD1-in and SD1-ja, respectively, and the effect of elongating culm was higher in the former allele than in the latter one. Total brown rice yield (g/m²), including unripened grains, was in the order of IR36 (611) ≧ 5867-36 (586) ≧ Koshi-36 (572), indicating non-significant differences among them. Yield-1.5mm sieve (g/m²) was in the order of IR36 (596) ≧ 5867-36 (575) ≧ Koshi-36 (558). Spikelet number per panicle was in the order of 5867-36 (89.2) ≧ IR36 (84.7) ≧ Koshi-36 (79.8), and 5867-36 > Koshi-36. Panicle number per m² was in the order of IR36 (428) ≧ Koshi-36 (403) ≧ 5867-36 (353), and IR36 > 5867-36, suggesting that sd1-d increased number of panicles compared with SD1-in. Ripened-grain percentage-1.5mm sieve was in the order of Koshi-36 (86.0) ≧ 5867-36 (85.0) ≧ IR36 (82.7), and Koshi-36 > IR36. Thousand brown-rice-grain weight-1.5mm sieve (g) was in the order of 5867-36 (21.5) > Koshi-36 (20.2) ≧ IR36 (19.9). Total dry weight at maturity (g/m²) was in the order of 5867-36 (1404 ) ≧ IR36 (1310) ≧ Kosihi-36 (1290). Harvest index of total brown rice (%) was in the order of IR36 (39.6) > Koshi-36 (37.7) > 5867-36 (35.5). Hence, sd1-d did not exert significant effect on yield in indica genetic background. However, lodging was observed from the late stage of maturity in 5867-36 and Koshi-36, particularly in the former, which was principally due to their long culms. Consequently, sd1-d enables higher yield with higher fertilizer application, by enhancing lodging resistance, particularly in indica subspecies.

Keywords: rice, dwarfing gene, sd1-d, SD1-in, SD1-ja, yield

Procedia PDF Downloads 142
349 Diversity and Taxonomy: Malaysian Marine Algae Genus Halimeda (Halimedaceae, Chlorophyta)

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

The study of genus Halimeda in Malaysia is in the early stage due to less specific study on its taxonomy. Most of the previous research tend to choose other genus such as Caulerpa and Gracilaria because of the potential of being utilized. The identification of Halimeda is complex by the high morphological variation within individual species due to different types of habitat and the changes in composition of seawater. The study was completed to study the diversity and distribution of Halimeda in Malaysia and to identify the morphological and anatomical differences between Halimeda species. The methods which have been used for this study are collection of Halimeda and seawater, preservation of specimen, identification of the specimen including the preparation of the temporary slide and decalcification of the calcium layer by using diluted hydrochloric acid. The specimen were processed in laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. Environmental parameters were tested by using YSI multiparameter probe and the recorded data were temperature, salinity, pH and dissolved oxygen. The nutrient content of seawater such as nitrate and phosphate were analysed by using Hach kit model DR 2000. In the present study, out of 330 herbarium specimen, ten species were identified as Halimeda cuneata, H. discoidea, H. macroloba, H. macrophysa, H. opuntia, H. simulans, H. stuposa, H. taenicola, H. tuna and H. velasquezii. Of these, five species were new record to Malaysia. They are Halimeda cuneata, H. macrophysa, H. stuposa, H. taenicola and H. velasquezii. H. opuntia was found as the most abundance species with wide distribution in Malaysia coastal area. Meanwhile, from the study of their distribution, two localities in which Pulau Balak Balak, Kudat and Pulau Langkawi, Kedah, were noted having high number of Halimeda species. As a conclusion, this study has successfully identified ten species of Halimeda of Malaysia with full description of morphological characteristics that may assist further researcher to differentiate and identify Halimeda.

Keywords: Distribution, diversity, Halimeda, morphological, taxonomy

Procedia PDF Downloads 302
348 Risk-taking and Avoidance Decisions in Pandemic Agriculture in Georgia

Authors: Nino Damenia

Abstract:

The paper discusses the risks arising in agriculture in Georgia, the possibilities of their acceptance and prevention, the threat created by the pandemic crisis, and the state programs for overcoming them. The share of agriculture in the country's GDP is 8.3%. Over the past five years, Georgia has imported $ 5.9 billion worth of agri-food products. Despite these figures, agriculture has become an important sector for the Georgian government since 2012, as evidenced by the more than 1.5 billion GEL spent from the 2012-2020 budget for agricultural development. Any field of agriculture, be it poultry, livestock, cereals, fruits, or vegetables, is very sensitive to various climatic and viral risks. Avoiding these risks requires additional investment. It is noteworthy that small farms are mainly affected by the risks, while relatively large farms face fewer problems because they are relatively prepared to face the problems and can avoid them more easily. An example of viral risk in the article is the export of hazelnuts, which has quite a lot of potential. Due to the spoilage of the crop caused by Brown Marmorated Stink Bug (BMSB), hazelnut exports have declined considerably over the years. If the volume of hazelnuts exported in 2016 was 179 378 thousand USD, due to the deficit caused by Brown Marmorated Stink Bug (BMSB) in 2018, it became 57 124 thousand USD. And after the situation was relatively settled, hazelnut seedlings were poisoned. By 2020, this figure improved to 91,088 thousand US dollars. The development of the agricultural sector and the reduction of risks require technological development, investor interest, and even more state support to enable more small farms to have the potential for greater production and sustainable development. The aim of the study is to identify the risks arising in the agricultural sector of Georgia before and after the pandemic, to evaluate them, compare them with the agriculture of some European countries, and to develop the necessary recommendations to avoid the emerging risks. The research uses methods of analysis and synthesis, observation, induction, deduction, and analysis of statistics. The paper is based on both Georgian and foreign scientific research, as well as state-published documentation on agricultural assistance programs. The research is based on the analysis of data published by the European Statistics Office, the National Statistics Office of Georgia, and many other organizations. The results of the study and the recommendations will help reduce the risks in agriculture in Georgia and, in general, to identify the existing potential and the development of the sector as a whole.

Keywords: risk, agriculture, pandemi, brown marmorated stink bug (BMSB)

Procedia PDF Downloads 98
347 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks

Authors: Andrew C. Eloka Eboka, Freddie L. Inambao

Abstract:

Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.

Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond

Procedia PDF Downloads 339
346 Biostratigraphic Significance of Shaanxilithes ningqiangensis from the Tal Group (Cambrian), Nigalidhar Syncline, Lesser Himalaya, India and Its GC-MS Analysis

Authors: C. A. Sharma, Birendra P. Singh

Abstract:

We recovered 40 well preserved ribbon-shaped, meandering specimens of S. ningqiangensis from the Earthy Dolomite Member (Krol Group) and calcareous siltstone beds of the Earthy Siltstone Member (Tal Group) showing closely spaced annulations that lacked branching. The beginning and terminal points are indistinguishable. In certain cases, individual specimens are characterized by irregular, low-angle to high-angle sinuosity. It has been variously described as body fossil, ichnofossil and algae. Detailed study of this enigmatic fossil is needed to resolve the long standing controversy regarding its phylogenetic and stratigraphic placements, which will be an important contribution to the evolutionary history of metazoans. S. ningqiangensis has been known from the late Neoproterozoic (Ediacaran) of southern and central China (Sichuan, Shaanxi, Quinghai and Guizhou provinces and Ningxia Hui Autonomous region), Siberian platform and across Pc/C Boundary from latest Neoprterozoic to earliest Cambrian of northern India. Shaanxilithes is considered an Ediacaran organism that spans the Precambrian–Cambrian boundary, an interval marked by significant taphonomic and ecological transformations that include not only innovation but also probable extinction. All the past well constrained finds of S. ningqiangensis are restricted to Ediacaran age. However, due to the new recoveries of the fossil from Nigalidhar Syncline, the stratigraphic status of S. ningqiangensis-bearing Earthy Siltstone Member of the Shaliyan Formation of the Tal Group (Cambrian) is rendered uncertain, though the overlying Chert Member in the adjoining Korgai Syncline has yielded definite early Cambrian acritarchs. The moot question is whether the Earthy Siltstone Member represents an Ediacaran or an early Cambrian age?. It would be interesting to find if Shaanxilithes, so far known from Ediacaran sequences, could it transgress to the early Cambrian or in simple words could it withstand the Pc/C Boundary event? GC-MS data shows the S. ningqiangensis structure is formed by hydrocarbon organic compounds which are filled with inorganic elements filler like silica, Calcium, phosphorus etc. The S. ningqiangensis structure is a mixture of organic compounds of high molecular weight, containing several saturated rings with hydrocarbon chains having an occasional isolated carbon-carbon double bond and also containing, in addition, to small amounts of nitrogen, sulfur and oxygen. Data also revealed that the presence of nitrogen which would be either in the form of peptide chains means amide/amine or chemical form i.e. nitrates/nitrites etc. The formula weight and the weight ratio of C/H shows that it would be expected for algae derived organics, since algae produce fatty acids as well as other hydrocarbons such as cartenoids.

Keywords: GC-MS Analysis, lesser himalaya, Pc/C Boundary, shaanxilithes

Procedia PDF Downloads 227
345 The Effect of Cow Reproductive Traits on Lifetime Productivity and Longevity

Authors: Lāsma Cielava, Daina Jonkus, Līga Paura

Abstract:

The age of first calving (AFC) is one of the most important factors that have a significant impact on cow productivity in different lactations and its whole life. A belated AFC leads to reduced reproductive performance and it is one of the main reasons for reduced longevity. Cows that calved in time period from 2001-2007 and in this time finished at least four lactations were included in the database. Data were obtained from 68841 crossbred Holstein Black and White (HM), crossbred Latvian Brown (LB), and Latvian Brown genetic resources (LBGR) cows. Cows were distributed in four groups depending on age at first calving. The longest lifespan was conducted for LBGR cows, but they were also characterized with lowest lifetime milk yield and life day milk yield. HM breed cows had the shortest lifespan, but in the lifespan of 2862.2 days was obtained in average 37916.4 kg milk accordingly 13.2 kg milk in one life day. HM breed cows were also characterized with longer calving intervals (CI) in first four lactations, but LBGR cows had the shortest CI in the study group. Age at first calving significantly affected the length of CI in different lactations (p<0.05). HM cows that first time calved >30 months old in the fourth lactation had the longest CI in all study groups (421.4 days). The LBGR cows were characterized with the shortest CI, but there was slight increase in second and third lactation. Age at first calving had a significant impact on cows’ age in each calving time. In the analysis, cow group was conducted that cows with age at first calving <24 months or in average 580.5 days at the time of fifth calving were 2156.7 days (5.9 years) old, but cows with age at first calving >30 months (932.6 days) at the time of fifth calving were 2560.9 days (7.3 years) old.

Keywords: age at first calving, calving interval, longevity, milk yield

Procedia PDF Downloads 186
344 Growth Performance and Intestinal Morphology of Isa Brown Pullet Chicks Fed Diets Containing Turmeric and Clove

Authors: Ayoola Doris Ayodele, Grace Oluwatoyin Tayo, Martha Dupe Olumide, Opeyemi Arinola Ajayi, Ayodeji Taofeek Ayo-Bello

Abstract:

Antibiotics have been widely used in animal nutrition to improve growth performance and health worldwide for many decades. However, there are rising concerns on the negative impact of dependence on antibiotic growth promoters (AGP) to improve animal performance despite its tremendous use. The need to improve performance in poultry production creates demand for natural alternative sources. Phytogenic feed additives (PFA) are plant-derived natural bioactive compounds that could be incorporated into animal feed to enhance livestock productivity. The effect of Turmeric, clove and turmeric + clove as feed additive was evaluated on performance and intestinal morphology of egg type chickens. 504- fifteen day old Isa brown chicks were weighed and randomly distributed to nine dietary treatments by a 3 x 3 factorial arrangement (test ingredient x inclusion level) in a completely randomized design, with four replicates of 14 birds each. The birds were fed Chick starter diet containing (2800 kcal/kg ME; 20.8% CP). Dietary treatments were Group 1 (T1- basal diet with 0% Turmeric inclusion), (T2- basal diet with 1% Turmeric inclusion), (T3- basal diet with 2% Turmeric inclusion). Group 2 (T4- basal diet with 0% clove inclusion), (T5- basal diet with 1% clove inclusion), (T6- basal diet with 2% clove inclusion). Group 3, turmeric + clove combination on 1:1 ratio weight for weight (T7- basal diet with 0% turmeric + 0% clove inclusion), (T8- basal diet with 0.5% turmeric + 0.5 clove% inclusion), (T9- basal diet with 1% turmeric + 1% clove inclusion). Performance parameters were evaluated throughout the experiment. The experiment spanned from day 15 to 56. Data were analyzed using Analysis of Variance (ANOVA) followed by Duncan’s Multiple Range Test with significance of P≤ 0.05. Significant differences (P>0.05) were not observed in final body weight, weight gain, feed intake and FCR among birds fed with diets containing across the treatments. However, birds fed with test ingredients showed higher numerical values in final body weight and weight gain when compared to the birds without additive. Birds on T8 had the highest final body weight value of 617.33 g and low values in all the control treatments (T1 -588 g, T4- 572 g and T7 -584 g). At day 56, intestinal samples were taken from the jejunum and ileum to evaluate the villus height, crypt depth and villus: crypt depth ratio. Addition of turmeric, clove and turmeric + clove in the diet produced significant (P< 0.05) effect on Jejunum and ileum of birds. Therefore, Turmeric and clove can be used as feed additives for pullet birds because they have a positive effect on growth performance and intestinal morphology of pullet chicks.

Keywords: clove, intestinal morphology, isa brown chicks, performance, turmeric

Procedia PDF Downloads 136