Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6418

Search results for: analytical solution

6418 Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model

Authors: Xiaoyun Li, Suoang Longzhou

Abstract:

This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020.

Keywords: redshift, cosmic expansion model, analytical solution, stellar distance

Procedia PDF Downloads 87
6417 Analytical Solution of Blassius Equation Using the Kourosh Method

Authors: Mohammad Reza Shahnazari, Reza Kazemi, Ali Saberi

Abstract:

Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application.

Keywords: Blasius equation, boundary layer, Kourosh method, analytical solution

Procedia PDF Downloads 282
6416 Analytical Solution of Specific Energy Equation in Exponential Channels

Authors: Abdulrahman Abdulrahman

Abstract:

The specific energy equation has many applications in practical channels, such as exponential channels. In this paper, the governing equation of alternate depth ratio for exponential channels, in general, was investigated towards obtaining analytical solution for the alternate depth ratio in three exponential channel shapes, viz., rectangular, triangular, and parabolic channels. The alternate depth ratio for rectangular channels is quadratic; hence it is very simple to solve. While for parabolic and triangular channels, the alternate depth ratio is cubic and quartic equations, respectively, analytical solution for these equations may be achieved easily for a given Froud number. Different examples are solved to prove the efficiency of the proposed solution. Such analytical solution can be easily used in natural rivers and most of practical channels.

Keywords: alternate depth, analytical solution, specific energy, parabolic channel, rectangular channel, triangular channel, open channel flow

Procedia PDF Downloads 95
6415 Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces

Authors: A. Kazemi Jouybari, A. Mirabdolah Lavasani

Abstract:

This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate.

Keywords: condensation, numerical solution, analytical solution, entropy rate

Procedia PDF Downloads 121
6414 An Analytical Method for Solving General Riccati Equation

Authors: Y. Pala, M. O. Ertas

Abstract:

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

Keywords: Riccati equation, analytical solution, proper solution, nonlinear

Procedia PDF Downloads 250
6413 A Semi-Analytical Method for Analysis of the Axially Symmetric Problem on Indentation of a Hot Circular Punch into an Arbitrarily Nonhomogeneous Halfspace

Authors: S. Aizikovich, L. Krenev, Y. Tokovyy, Y. C. Wang

Abstract:

An approximate analytical-numerical solution to the axisymmetric problem on thermo-mechanical indentation of a flat cylindrical punch into an arbitrarily non-homogeneous elastic half-space is constructed by making use of the bilateral asymptotic method. The key point of this method lies in evaluation of the ker¬nels in the obtained integral equations by making use of a numerical technique. Once the structure of the kernel is defined, it then is approximated by an analytical expression of special kind so that the solution of the integral equation can be achieved analytically. This fact allows for construction of the solution in an analytical form, which is convenient for analysis of the mechanical effects concerned with arbitrarily presumed non-homogeneity of the material.

Keywords: contact problem, circular punch, arbitrarily-nonhomogeneous halfspace

Procedia PDF Downloads 449
6412 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: analytical solution, free-surface wave, hydraulic channel, inviscid fluid

Procedia PDF Downloads 82
6411 Analytical Solution for Thermo-Hydro-Mechanical Analysis of Unsaturated Porous Media Using AG Method

Authors: Davood Yazdani Cherati, Hussein Hashemi Senejani

Abstract:

In this paper, a convenient analytical solution for a system of coupled differential equations, derived from thermo-hydro-mechanical analysis of three-phase porous media such as unsaturated soils is developed. This kind of analysis can be used in various fields such as geothermal energy systems and seepage of leachate from buried municipal and domestic waste in geomaterials. Initially, a system of coupled differential equations, including energy, mass, and momentum conservation equations is considered, and an analytical method called AGM is employed to solve the problem. The method is straightforward and comprehensible and can be used to solve various nonlinear partial differential equations (PDEs). Results indicate the accuracy of the applied method for solving nonlinear partial differential equations.

Keywords: AGM, analytical solution, porous media, thermo-hydro-mechanical, unsaturated soils

Procedia PDF Downloads 73
6410 Finding the Elastic Field in an Arbitrary Anisotropic Media by Implementing Accurate Generalized Gaussian Quadrature Solution

Authors: Hossein Kabir, Amir Hossein Hassanpour Mati-Kolaie

Abstract:

In the current study, the elastic field in an anisotropic elastic media is determined by implementing a general semi-analytical method. In this specific methodology, the displacement field is computed as a sum of finite functions with unknown coefficients. These aforementioned functions satisfy exactly both the homogeneous and inhomogeneous boundary conditions in the proposed media. It is worth mentioning that the unknown coefficients are determined by implementing the principle of minimum potential energy. The numerical integration is implemented by employing the Generalized Gaussian Quadrature solution. Furthermore, with the aid of the calculated unknown coefficients, the displacement field, as well as the other parameters of the elastic field, are obtainable as well. Finally, the comparison of the previous analytical method with the current semi-analytical method proposes the efficacy of the present methodology.

Keywords: anisotropic elastic media, semi-analytical method, elastic field, generalized gaussian quadrature solution

Procedia PDF Downloads 234
6409 Convective Brinkman-Forchiemer Extended Flow through Channel Filled with Porous Material: An Approximate Analytical Approach

Authors: Basant K. Jha, M. L. Kaurangini

Abstract:

An approximate analytical solution is presented for convective flow in a horizontal channel filled with porous material. The Brinkman-Forchheimer extension of Darcy equation is utilized to model the fluid flow while the energy equation is utilized to model temperature distribution in the channel. The solutions were obtained utilizing the newly suggested technique and compared with those obtained from an implicit finite-difference solution.

Keywords: approximate analytical, convective flow, porous material, Brinkman-Forchiemer

Procedia PDF Downloads 266
6408 Lie Symmetry Treatment for Pricing Options with Transactions Costs under the Fractional Black-Scholes Model

Authors: B. F. Nteumagne, E. Pindza, E. Mare

Abstract:

We apply Lie symmetries analysis to price and hedge options in the fractional Brownian framework. The reputation of Lie groups is well spread in the area of Mathematical sciences and lately, in Finance. In the presence of transactions costs and under fractional Brownian motions, analytical solutions become difficult to obtain. Lie symmetries analysis allows us to simplify the problem and obtain new analytical solution. In this paper, we investigate the use of symmetries to reduce the partial differential equation obtained and obtain the analytical solution. We then proposed a hedging procedure and calibration technique for these types of options, and test the model on real market data. We show the robustness of our methodology by its application to the pricing of digital options.

Keywords: fractional brownian model, symmetry, transaction cost, option pricing

Procedia PDF Downloads 330
6407 Fully Coupled Porous Media Model

Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li

Abstract:

This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.

Keywords: coupled, implicit, monolithic, porous media

Procedia PDF Downloads 18
6406 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure

Authors: Nosakhare Enoma, Alphose Zingoni

Abstract:

The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.

Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis

Procedia PDF Downloads 247
6405 Analytical Solution for End Depth Ratio in Rectangular Channels

Authors: Abdulrahman Abdulrahman, Abir Abdulrahman

Abstract:

Free over-fall is an instrument for measuring discharge in open channels by measuring end depth. A comprehensive researchers investigated theoretically and experimentally brink phenomenon with various approaches for different cross-sectional shapes. Anderson's method, based on Boussinq's approximation and energy approach was used to derive a pressure distribution factor at end depth. Applying the one-dimensional momentum equation and the principles of limit slope analysis, a relevant analytical solution may be derived for brink depth ratio (EDR) in prismatic rectangular channel. Also relationships between end depth ratio and slope ratio for a given non-dimensional normal or critical depth with upstream supercritical flow regime are presented. Simple indirect procedure is used to estimate the end depth discharge ratio (EDD) for subcritical and supercritical flow using measured end depth. The comparison of this analysis with all previous theoretical and experimental studies showed an excellent agreement.

Keywords: analytical solution, brink depth, end depth, flow measurement, free over fall, hydraulics, rectangular channel

Procedia PDF Downloads 102
6404 Flexural Analysis of Symmetric Laminated Composite Timoshenko Beams under Harmonic Forces: An Analytical Solution

Authors: Mohammed Ali Hjaji, A.K. El-Senussi, Said H. Eshtewi

Abstract:

The flexural dynamic response of symmetric laminated composite beams subjected to general transverse harmonic forces is investigated. The dynamic equations of motion and associated boundary conditions based on the first order shear deformation are derived through the use of Hamilton’s principle. The influences of shear deformation, rotary inertia, Poisson’s ratio and fibre orientation are incorporated in the present formulation. The resulting governing flexural equations for symmetric composite Timoshenko beams are exactly solved and the closed form solutions for steady state flexural response are then obtained for cantilever and simply supported boundary conditions. The applicability of the analytical closed-form solution is demonstrated via several examples with various transverse harmonic loads and symmetric cross-ply and angle-ply laminates. Results based on the present solution are assessed and validated against other well established finite element solutions and exact solutions available in the literature.

Keywords: analytical solution, flexural response, harmonic forces, symmetric laminated beams, steady state response

Procedia PDF Downloads 391
6403 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile

Procedia PDF Downloads 154
6402 Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface

Authors: Sen Yung Lee, Chih Cheng Huang, Te Wen Tu

Abstract:

A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology.

Keywords: analytical solution, nonuniform hollow cylinder, time-dependent boundary condition, transient heat conduction

Procedia PDF Downloads 395
6401 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder

Authors: A. Amiri Delouei

Abstract:

In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.

Keywords: functionally graded materials, unsteady heat conduction, cylinder, temperature distribution

Procedia PDF Downloads 196
6400 Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction.

Keywords: porous pipe, reactive viscous fluid, transient natural-convective flow, analytical solution

Procedia PDF Downloads 225
6399 Vibration Response of Soundboards of Classical Guitars

Authors: Meng Koon Lee, Mohammad Hosseini Fouladi, Satesh Narayana Namasivayam

Abstract:

Research is focused on the response of soundboards of Classical guitars at frequencies up to 5 kHz as the soundboard is a major contributor to acoustic radiation at high frequencies when compared to the bridge and sound hole. A thin rectangular plate of variable thickness that is simply-supported on all sides is used as an analytical model of the research. This model is used to study the response of the guitar soundboard as the latter can be considered as a modified form of a rectangular plate. Homotopy Perturbation Method (HPM) is selected as a mathematical method to obtain an analytical solution of the 4th-order parabolic partial differential equation of motion of the rectangular plate of constant thickness viewed as a linear problem. This procedure is generalized to the nonlinear problem of the rectangular plate with variable thickness and an analytical solution can also be obtained. Sound power is used as a parameter to investigate the acoustic radiation of soundboards made from spruce using various bracing patterns. The sound power of soundboards made from Malaysian softwood such as damar minyak, sempilor or podo are investigated to determine the viability of replacing spruce as future materials for soundboards of Classical guitars.

Keywords: rectangular plates, analytical solution, homotopy perturbation, natural frequencies

Procedia PDF Downloads 127
6398 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, step method, delay differential equation, two delays

Procedia PDF Downloads 64
6397 Impact of the Time Interval in the Numerical Solution of Incompressible Flows

Authors: M. Salmanzadeh

Abstract:

In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.

Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit

Procedia PDF Downloads 418
6396 Analytical Method for Seismic Analysis of Shaft-Tunnel Junction under Longitudinal Excitations

Authors: Jinghua Zhang

Abstract:

Shaft-tunnel junction is a typical case of the structural nonuniformity in underground structures. The shaft and the tunnel possess greatly different structural features. Even under uniform excitations, they tend to behave discrepantly. Studies on shaft-tunnel junctions are mainly performed numerically. Shaking table tests are also conducted. Although many numerical and experimental data are obtained, an analytical solution still has great merits of gaining more insights into the shaft-tunnel problem. This paper will try to remedy the situation. Since the seismic responses of shaft-tunnel junctions are very related to directions of the excitations, they are studied in two scenarios: the longitudinal-excitation scenario and the transverse-excitation scenario. The former scenario will be addressed in this paper. Given that responses of the tunnel are highly dependent on the shaft, the analytical solutions would be developed firstly for the vertical shaft. Then, the seismic responses of the tunnel would be discussed. Since vertical shafts bear a resemblance to rigid caissons, the solution proposed in this paper is derived by introducing terms of shaft-tunnel and soil-tunnel interactions into equations originally developed for rigid caissons. The validity of the solution is examined by a validation model computed by finite element method. The mutual influence between the shaft and the tunnel is introduced. The soil-structure interactions are discussed parametrically based on the proposed equations. The shaft-tunnel relative displacement and the soil-tunnel relative stiffness are found to be the most important parameters affecting the magnitudes and distributions of the internal forces of the tunnel. A hinge-joint at the shaft-tunnel junction could significantly reduce the degree of stress concentration compared with a rigid joint.

Keywords: analytical solution, longitudinal excitation, numerical validation , shaft-tunnel junction

Procedia PDF Downloads 64
6395 Analytical Formulae for the Approach Velocity Head Coefficient

Authors: Abdulrahman Abdulrahman

Abstract:

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

Keywords: broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow

Procedia PDF Downloads 202
6394 Numerical Modeling Analysis for the Double-Layered Asphalt Pavement Structure Behavior with Interface Bonding

Authors: Minh Tu Le, Quang Huy Nguyen, Mai Lan Nguyen

Abstract:

Bonding characteristics between pavement layers have an important influence on responses of pavement structures. This paper deals with analytical solution for the stresses, strains, and deflections of double-layered asphalt pavement structure. This solution is based on the homogeneous half-space of layered theory developed by Burmister (1943). The partial interaction between the layers is taken into account by considering an interface bonding behavior which is obtained by push-out shear test. Numerical applications considering three cases of bonding (unbonded, partially bonded, and fully bonded overlays) are carried out to the influence of the interface bonding on the structural behavior of asphalt pavement under static loading. Further, it was observed that numerical results indicate that the horizontal shear reaction modulus at the interface (Ks) will significantly affect pavement structure behavior.

Keywords: analytical solution, interface bonding, shear test keyword, double-layered asphalt, shear reaction modulus

Procedia PDF Downloads 148
6393 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.

Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision

Procedia PDF Downloads 338
6392 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils

Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh

Abstract:

This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.

Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional

Procedia PDF Downloads 35
6391 A Superposition Method in Analyses of Clamped Thick Plates

Authors: Alexander Matrosov, Guriy Shirunov

Abstract:

A superposition method based on Lame's idea is used to get a general analytical solution to analyze a stress and strain state of a rectangular isotropjc elastic thick plate. The solution is built by using three solutions of the method of initial functions in the form of double trigonometric series. The results of bending of a thick plate under normal stress on its top face with two opposite sides clamped while others free of load are presented and compared with FEM modelling.

Keywords: general solution, method of initial functions, superposition method, thick isotropic plates

Procedia PDF Downloads 447
6390 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow

Procedia PDF Downloads 145
6389 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations

Authors: Humayun R. H. Kabir

Abstract:

An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.

Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations

Procedia PDF Downloads 313