Search results for: boundary layer separation
4435 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills
Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry
Abstract:
The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel
Procedia PDF Downloads 3804434 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD
Authors: Alaa A. Osman, Amgad M. Bayoumy Aly, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil
Abstract:
In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Navier-stokes equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-of-freedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters during the store separation are compared for every grid size with published experimental data.Keywords: CFD modelling, transonic store separation, quasi-steady flow, moving-body trajectories
Procedia PDF Downloads 3904433 Household Knowledge, Attitude, and Determinants in Solid Waste Segregation: The Case of Sfax City
Authors: Leila Kharrat, Younes Boujelbene
Abstract:
In recent decades, solid waste management (SWM) has become a global concern because rapid population growth and overexploitation of non-renewable resources have generated enormous amounts of waste far exceeding carrying capacity; too, it poses serious threats to the environment and health. However, it is still difficult to combat the growing amount of solid waste before assessing the condition of people. Therefore, this study was conducted to assess the knowledge, attitudes, perception, and practices on the separation of solid waste in Sfax City. Nowadays, GDS is essential for sustainable development, hence the need for intensive research. Respondents from seven different districts in the city of Sfax were analyzed through a questionnaire survey with 342 households. This paper presents a qualitative exploratory study on the behavior of the citizens in the field of waste separation. The objective knows the antecedents of waste separation and the representation that individuals have about sorting waste on a specific territory which presents some characteristics regarding waste management in Sfax city. Source separation is not widely practiced and people usually sweep their places throwing waste components into the streets or neighboring plots. The results also indicate that participation in solid waste separation activities depends on the level of awareness of separating activities in the area, household income and educational level. It is, therefore, argued that increasing quality of municipal service is the best means of promoting positive attitudes to solid waste separation activities. One of the effective strategies identified by households that can be initiated by policymakers to increase the rate of participation in separation activities and eventually encourage them to participate in recycling activities is to provide a financial incentive in all residential areas in Sfax city.Keywords: solid waste management, waste separation, public policy, econometric modelling
Procedia PDF Downloads 2374432 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology
Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache
Abstract:
The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation
Procedia PDF Downloads 574431 Resolving Increased Water-Cut in South and East Kuwait Areas through Water Knock-Out Facility Project
Authors: Sunaitan Al Mutairi, Kumar Vallatharasu, Batool Ismaeel
Abstract:
The Water Knock-Out (WKO) facility project is to handle the undesirable impact of the increasing water production rate in South and East Kuwait (S&EK) areas and break the emulsions and ensure sufficient separation of water at the new upstream facility, to reduce the load on the existing separation equipment in the Gathering Centers (GC). As the existing separation equipment in the Gathering Centers are not efficient to separate the emulsions, the Compact Electrostatic Coalescer (CEC) and Vessel Internal Electrostatic Coalescer (VIEC) technologies have been selected for enhancing the liquid-liquid separation by using the alternating voltage/frequency on electrical fields, to handle the increasing water-cut in S&EK. In the Compact Electrostatic Coalescer (CEC) technology method, the CEC equipment is installed downstream of the inlet separator externally, whereas in the Vessel Internal Electrostatic Coalescer (VIEC) technology method, the VIEC is built inside the treater vessel, downstream of the inlet separator with advanced internals for implementing electrocoalescence of water particles and hence enhancing liquids separation. The CEC and VIEC technologies used in the Water Knockout Facility project has the ability to resolve the increasing water cut in the S&EK area and able to enhance the liquid-liquid separation in the WKO facility separation equipment. In addition, the WKO facility is minimizing the load on the existing Gathering Center’s separation equipment, by tackling the high water-cut wells, upstream of each GC. The required performances at the outlet of the WKO facility are Oil in Water 100ppmv, Water in Oil 15% volume, liquid carryover in gas 0.1 US gal/MMSCFD, for the water cut ranging from 37.5 to 75% volume. The WKO facility project is used to sustain, support and maintain Greater Burgan production at 1.7 Million Barrels of Oil Per Day (MMBOPD), by handling the increasing water production rate.Keywords: emulsion, increasing water-cut, production, separation equipment
Procedia PDF Downloads 2454430 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil
Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina
Abstract:
This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis
Procedia PDF Downloads 2094429 Adsorption-desorption Behavior of Weak Polyelectrolytes Deposition on Aminolyzed-PLA Non-woven
Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari
Abstract:
In this study, the adsorption-desorption behavior of poly(amidoamine) (PAMAM) as a polycation and poly (acrylic acid) (PAA) as a polyanion deposited on aminolyzed-PLA nonwoven through layer-by-layer technique (lbl) was studied. The adsorption-desorption behavior was monitored by UV adsorbance spectroscopy and turbidity tests of the waste polyelectrolytes after each deposition. Also, the drying between each deposition step was performed to study the effect of drying on adsorption-desorption behavior. According to UV adsorbance spectroscopy of the waste polyelectrolyte after each deposition, it was revealed that drying has a great effect on the deposition behavior of the next layer. Regarding the deposition of the second layer, drying caused more desorption and removal of the previously deposited layer since the turbidity and the absorbance of the waste increased in comparison to pure polyelectrolyte. To deposit the third layer, the same scenario occurred and drying caused more removal of the previously deposited layer. However, the deposition of the fourth layer drying after the deposition of the third layer did not affect the adsorption-desorption behavior. Since the adsorbance and turbidity of the samples that were dried and those that were not dried were the same. As a result, it seemed that deposition of the fourth layer could be the starting point where lbl reached its constant state. The decrease in adsorbance and remaining turbidity of the waste same as a pure polyelectrolyte can indicate that most portion of the polyelectrolyte was adsorbed onto the substrate rather than complex formation in the bath as the subsequence of the previous layer removal.Keywords: Adsorption-desorption behavior, lbl technique, poly(amidoamine), poly (acrylic acid), weak polyelectrolytes
Procedia PDF Downloads 534428 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink
Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang
Abstract:
In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN
Procedia PDF Downloads 5414427 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis
Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud
Abstract:
This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.Keywords: reinforced soil, geogrid, sand dunes, bearing capacity
Procedia PDF Downloads 4194426 Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method
Authors: I Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi
Abstract:
In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm.Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation
Procedia PDF Downloads 3154425 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 1454424 Two and Three Layer Lamination of Nanofiber
Authors: Roman Knizek, Denisa Karhankova, Ludmila Fridrichova
Abstract:
For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.Keywords: nanofiber layer, nanomembrane, lamination, electrospinning
Procedia PDF Downloads 7274423 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation
Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo
Abstract:
The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation
Procedia PDF Downloads 1854422 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education
Procedia PDF Downloads 1634421 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates
Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer
Abstract:
The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.Keywords: vibration, composite materials, finite element, APDL ANSYS
Procedia PDF Downloads 434420 Differential Transform Method: Some Important Examples
Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen
Abstract:
In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions
Procedia PDF Downloads 5374419 Ordinary and Triplet Superconducting Spin Valve Effect in Fe/Pb Based Heterostructures
Authors: P. V. Leksin, A. A. Kamashev, N. N. Garifyanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, B. Büchner
Abstract:
We report on experimental evidence for the occurrence of the long range triplet correlations (LRTC) of the superconducting (SC) condensate in the spin-valve heterostructures CoOx/Fe1/Cu/Fe2/Pb. The LRTC generation in this layer sequence is accompanied by a Tc suppression near the orthogonal mutual orientation of the Fe1 and Fe2 layers’ magnetization. This Tc drop reaches its maximum of 60mK at the Fe2 layer thickness dFe2 = 0.6 nm and falls down when dFe2 is increased. The modification of the Fe/Pb interface by using a thin Cu intermediate layer between Fe and Pb layers reduces the SC transition width without preventing the interaction between Pb and Fe2 layers. The dependence of the SSVE magnitude on Fe1 layer thickness dFe1 reveals maximum of the effect when dFe1 and dFe2 are equal and the dFe2 value is minimal. Using the optimal Fe layers thicknesses and the intermediate Cu layer between Pb and Fe2 layer we realized almost full switching from normal to superconducting state due to SSVE.Keywords: superconductivity, ferromagnetism, heterostructures, proximity effect
Procedia PDF Downloads 4164418 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity
Authors: Manana Chumburidze, David Lekveishvili
Abstract:
We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution
Procedia PDF Downloads 5064417 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment
Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Srinivasa Reddy Mallampati, Byeong-Kyu Lee
Abstract:
This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle
Procedia PDF Downloads 3594416 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold
Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos
Abstract:
Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.Keywords: ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO₂ / In₂O₃ bilayer
Procedia PDF Downloads 2704415 One Dimensional Unsteady Boundary Layer Flow in an Inclined Wavy Wall of a Nanofluid with Convective Boundary Condition
Authors: Abdulhakeem Yusuf, Yomi Monday Aiyesimi, Mohammed Jiya
Abstract:
The failure in an ordinary heat transfer fluid to meet up with today’s industrial cooling rate has resulted in the development of high thermal conductivity fluid which nanofluids belongs. In this work, the problem of unsteady one dimensional laminar flow of an incompressible fluid within a parallel wall is considered with one wall assumed to be wavy. The model is presented in its rectangular coordinate system and incorporates the effects of thermophoresis and Brownian motion. The local similarity solutions were also obtained which depends on Soret number, Dufour number, Biot number, Lewis number, and heat generation parameter. The analytical solution is obtained in a closed form via the Adomian decomposition method. It was found that the method has a good agreement with the numerical method, and it is also established that the heat generation parameter has to be kept low so that heat energy are easily evacuated from the system.Keywords: Adomian decomposition method, Biot number, Dufour number, nanofluid
Procedia PDF Downloads 3294414 Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations
Authors: Ahmed Ramadhan Al-Obaidi, Jassim Alhamid
Abstract:
In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement.Keywords: corrugated ring angle, corrugated diameter, Nusselt number, heat transfer
Procedia PDF Downloads 1434413 Polyethylenimine-Ethoxylated Dual Interfacial Layers for High-Efficient Quantum Dot Light-Emitting Diodes
Authors: Woosuk Lee
Abstract:
We controlled the electron injection rate in inverted quantum dot light-emitting diode (QLED) by inserting PEIE layer between ZnO electron transport layer(ETL) and quantum dots(QDs) layer and successfully demonstrated high efficiency of QLEDs. The inverted QLED has the layer structure of ITO(cathode)/ ZnO NPs/PEIE/QDs/PEIE/P-TPD/MoO3/Al(anode). The PEIE between poly-TPD hole transport layer (HTL) and quantum dot emitting layer protects QD EML during HTL coating process and improves the surface morphology. In addition, the hole injection barrier is reduced by upshifting the valence band maximum (VBM) of QDs. An additional layer of PEIE was introduced between ZnO and QD to balance charge within QD emissive layer in device, which serves as an effective electron blocking layer without changing device operating condition such as turn-on voltage and emissive spectra. As a result, the optimized QLED with 5nm PEIE shows a ~36% improved current efficiency and external quantum efficiency (EQE) compared to the QLED without PEIE.(maximum current efficiency, and EQE are achieved 70cd/A and 17.3%, respectively). In particular, the maximum brightness of the optimized QLED dramatically improved by a factor of 2.3 relative to the QLED without PEIE. The main reasons for these QLED performance improvement are due to the suppressing the leakage current across the device and well confined exciton by inserting PEIE layers.Keywords: quantum dot light-emitting diodes, interfacial layer, charge-injection balance, suppressing QD charging
Procedia PDF Downloads 1834412 Introduction to Two Artificial Boundary Conditions for Transient Seepage Problems and Their Application in Geotechnical Engineering
Authors: Shuang Luo, Er-Xiang Song
Abstract:
Many problems in geotechnical engineering, such as foundation deformation, groundwater seepage, seismic wave propagation and geothermal transfer problems, may involve analysis in the ground which can be seen as extending to infinity. To that end, consideration has to be given regarding how to deal with the unbounded domain to be analyzed by using numerical methods, such as finite element method (FEM), finite difference method (FDM) or finite volume method (FVM). A simple artificial boundary approach derived from the analytical solutions for transient radial seepage problems, is introduced. It should be noted, however, that the analytical solutions used to derive the artificial boundary are particular solutions under certain boundary conditions, such as constant hydraulic head at the origin or constant pumping rate of the well. When dealing with unbounded domains with unsteady boundary conditions, a more sophisticated artificial boundary approach to deal with the infinity of the domain is presented. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global artificial boundary conditions (ABCs) are simplified to local ones so that the computational efficiency is enhanced significantly. The introduced two local ABCs are implemented in a finite element computer program so that various seepage problems can be calculated. The two approaches are first verified by the computation of a one-dimensional radial flow problem, and then tentatively applied to more general two-dimensional cylindrical problems and plane problems. Numerical calculations show that the local ABCs can not only give good results for one-dimensional axisymmetric transient flow, but also applicable for more general problems, such as axisymmetric two-dimensional cylindrical problems, and even more general planar two-dimensional flow problems for well doublet and well groups. An important advantage of the latter local boundary is its applicability for seepage under rapidly changing unsteady boundary conditions, and even the computational results on the truncated boundary are usually quite satisfactory. In this aspect, it is superior over the former local boundary. Simulation of relatively long operational time demonstrates to certain extents the numerical stability of the local boundary. The solutions of the two local ABCs are compared with each other and with those obtained by using large element mesh, which proves the satisfactory performance and obvious superiority over the large mesh model.Keywords: transient seepage, unbounded domain, artificial boundary condition, numerical simulation
Procedia PDF Downloads 2944411 Assessment of the Production System and Management Practices in Selected Layer Chicken Farms in Batangas, Philippines
Authors: Monette S. De Castro, Veneranda A. Magpantay, Christine B. Adiova, Mark D. Arboleda
Abstract:
One-hundred-layer chicken farmers were randomly selected and interviewed using structured questionnaires to assess the production system and management practices in layer chicken farms. The respondents belonged to the commercial scale operation. Results showed that the predominant rearing and housing systems were intensive/complete confinement and open-sided, while slatted was the common type of flooring used during the brood-grow period. Dekalb and Lohmann were the common chicken layer strains reared by farmers. The majority of commercial chicken layer farms preferred ready-to-lay (RTL) pullets as their replacement stocks. Selling was the easiest way for farmers to dispose of and utilize poultry manure, while veterinary waste and mortality were disposed of in pits. Biosecurity practices employed by the farmers conformed with the ASEAN Biosecurity Management Manual for Commercial Poultry Farming. Flies and odor were the major problems in most layer farms that are associated with their farm wastes. Therefore, the application of new technologies and husbandry practices through training and actual demonstrations could be implemented to further improve the layer chicken raising in the province.Keywords: layer chicken farms, marketing, production system, waste management
Procedia PDF Downloads 744410 Different Cathode Buffer Layers in Organic Solar Cells
Authors: Radia Kamel
Abstract:
Considerable progress has been made in the development of bulk-heterojunction organic solar cells (OSCs) based on a blend of p-type and n-type organic semiconductors. To optimize the interfacial properties between the active layer and the electrode, a cathode buffer layer (CBL) is introduced. This layer can reduce the leakage current, increasing the open-circuit voltage and the fill factor while improving the OSC stability. In this work, the performance of PM6:Y6 OSC with 1-Chloronaphthalene as an additive is examined. To accomplish this, three CBLs PNDIT-F3N-Br, ZrAcac, and PDINO, are compared using the conventional configuration. The device with PNDIT-F3N-Br as CBL exhibits the highest power conversion efficiency of 16.04%. The results demonstrate that modifying the cathode buffer layer is crucial for achieving high-performance OSCs.Keywords: bulk heterojunction, cathode buffer layer, efficiency, organic solar cells
Procedia PDF Downloads 1674409 Enhancing the Network Security with Gray Code
Authors: Thomas Adi Purnomo Sidhi
Abstract:
Nowadays, network is an essential need in almost every part of human daily activities. People now can seamlessly connect to others through the Internet. With advanced technology, our personal data now can be more easily accessed. One of many components we are concerned for delivering the best network is a security issue. This paper is proposing a method that provides more options for security. This research aims to improve network security by focusing on the physical layer which is the first layer of the OSI model. The layer consists of the basic networking hardware transmission technologies of a network. With the use of observation method, the research produces a schematic design for enhancing the network security through the gray code converter.Keywords: network, network security, grey code, physical layer
Procedia PDF Downloads 5044408 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee
Abstract:
Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics
Procedia PDF Downloads 6234407 Numerical Investigation of Two Turbulence Models for Predicting the Temperature Separation in Conical Vortex Tube
Authors: M. Guen
Abstract:
A three-dimensional numerical study is used to analyze the behavior of the flow inside a vortex tube. The vortex tube or Ranque-Hilsch vortex tube is a simple device which is capable of dividing compressed air from the inlet nozzle tangentially into two flow with different temperatures warm and cold. This phenomenon is known from literature by temperature separation. The K ω-SST and K-ε turbulence models are used to predict the turbulent flow behaviour inside the tube. The vortex tube is an Exair 708 slpm (25 scfm) commercial tube. The cold and hot exits areas are 30.2 and 95 mm2 respectively. The vortex nozzle consists of 6 straight slots; the height and the width of each slot are 0.97 mm and 1.41 mm. The total area normal to the flow associated with six nozzles is therefore 8.15 mm 2. The present study focuses on a comparison between two turbulence models K ω-SST, K-ε by using a new configuration of vortex tube (Conical Vortex Tube). The performance curves of the temperature separation versus cold outlet mass fraction were calculated and compared with experimental and numerical study of other researchers.Keywords: conical vortex tube, temperature separation, cold mass fraction, turbulence
Procedia PDF Downloads 2494406 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 138