Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8661

Search results for: Dirichlet boundary conditions

8661 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy


In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions

Procedia PDF Downloads 59
8660 Differential Transform Method: Some Important Examples

Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen


In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.

Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions

Procedia PDF Downloads 440
8659 Existence of Positive Solutions to a Dirichlet Second Order Boundary Value Problem

Authors: Muhammad Sufian Jusoh, Mesliza Mohamed


In this paper, we investigate the existence of positive solutions for a Dirichlet second order boundary value problem by applying the Krasnosel'skii fixed point theorem on compression and expansion of cones.

Keywords: Krasnosel'skii fixed point theorem, positive solutions, Dirichlet boundary value problem, Dirichlet second order boundary problem

Procedia PDF Downloads 347
8658 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede


The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems

Procedia PDF Downloads 291
8657 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola


Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 56
8656 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic


Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 277
8655 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman


The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 472
8654 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions

Authors: Suleiman Bashir Adamu, Lawan Sani Taura


We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schrödinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained.

Keywords: Eigenvalues, Eigenfunction, Hamiltonian, Klein- Gordon equation, PT-symmetric quantum mechanics

Procedia PDF Downloads 279
8653 Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines

Authors: K. N. S. Kasi Viswanadham


Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.

Keywords: collocation method, coupled system, cubic b-splines, mesh points

Procedia PDF Downloads 135
8652 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi


In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation

Procedia PDF Downloads 204
8651 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics

Authors: Arturo Ayala-Hernandez, Humberto Hijar


We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.

Keywords: Multiparticle Collision Dynamics, fluid-solid, boundary conditions, molecular dynamics

Procedia PDF Downloads 453
8650 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann


The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 61
8649 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models

Authors: Azadeh Jafari, Robert G. Owens


In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.

Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics

Procedia PDF Downloads 289
8648 Effect of Boundary Condition on Granular Pressure of Gas-Solid Flow in a Rotating Drum

Authors: Rezwana Rahman


Various simulations have been conducted to understand the particle's macroscopic behavior in the solid-gas multiphase flow in rotating drums in the past. In these studies, the particle-wall no-slip boundary condition was usually adopted. However, the non-slip boundary condition is rarely encountered in real systems. A little effort has been made to investigate the particle behavior at slip boundary conditions. The paper represents a study of the gas-solid flow in a horizontal rotating drum at a slip boundary wall condition. Two different sizes of particles with the same density have been considered. The Eulerian–Eulerian multiphase model with the kinetic theory of granular flow was used in the simulations. The granular pressure at the rolling flow regime with specularity coefficient 1 was examined and compared with that obtained based on the no-slip boundary condition. The results reveal that the profiles of granular pressure distribution on the transverse plane of the drum are similar for both boundary conditions. But, overall, compared with those for the no-slip boundary condition, the values of granular pressure for specularity coefficient 1 are larger for the larger particle and smaller for the smaller particle.

Keywords: boundary condition, eulerian–eulerian, multiphase, specularity coefficient, transverse plane

Procedia PDF Downloads 122
8647 Theoretical Modal Analysis of Freely and Simply Supported RC Slabs

Authors: M. S. Ahmed, F. A. Mohammad


This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with an exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted.

Keywords: natural frequencies, mode shapes, modal analysis, ANSYS software, RC slabs

Procedia PDF Downloads 345
8646 Degeneracy and Defectiveness in Non-Hermitian Systems with Open Boundary

Authors: Yongxu Fu, Shaolong Wan


We study the band degeneracy, defectiveness, as well as exceptional points of non-Hermitian systems and materials analytically. We elaborate on the energy bands, the band degeneracy, and the defectiveness of eigenstates under open boundary conditions based on developing a general theory of one-dimensional (1D) non-Hermitian systems. We research the presence of the exceptional points in a generalized non-Hermitian Su-Schrieffer-Heeger model under open boundary conditions. Beyond our general theory, there exist infernal points in 1D non-Hermitian systems, where the energy spectra under open boundary conditions converge on some discrete energy values. We study two 1D non-Hermitian models with the existence of infernal points. We generalize the infernal points to the infernal knots in four-dimensional non-Hermitian systems.

Keywords: non-hermitian, degeneracy, defectiveness, exceptional points, infernal points

Procedia PDF Downloads 30
8645 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali


We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation

Procedia PDF Downloads 352
8644 Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation

Authors: Benedict Barnes, Anthony Y. Aidoo


A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard.

Keywords: divergence regularization method, Helmholtz equation, ill-posed inhomogeneous Cauchy boundary conditions

Procedia PDF Downloads 79
8643 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N


The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 50
8642 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener


In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 248
8641 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen


Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Keywords: open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far-field tsunami, shallow water equations, tsunami source, Indonesian tsunami of 2004

Procedia PDF Downloads 329
8640 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method

Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi


In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.

Keywords: boundary conditions, buckling, non-local, differential transform method

Procedia PDF Downloads 221
8639 Introduction to Two Artificial Boundary Conditions for Transient Seepage Problems and Their Application in Geotechnical Engineering

Authors: Shuang Luo, Er-Xiang Song


Many problems in geotechnical engineering, such as foundation deformation, groundwater seepage, seismic wave propagation and geothermal transfer problems, may involve analysis in the ground which can be seen as extending to infinity. To that end, consideration has to be given regarding how to deal with the unbounded domain to be analyzed by using numerical methods, such as finite element method (FEM), finite difference method (FDM) or finite volume method (FVM). A simple artificial boundary approach derived from the analytical solutions for transient radial seepage problems, is introduced. It should be noted, however, that the analytical solutions used to derive the artificial boundary are particular solutions under certain boundary conditions, such as constant hydraulic head at the origin or constant pumping rate of the well. When dealing with unbounded domains with unsteady boundary conditions, a more sophisticated artificial boundary approach to deal with the infinity of the domain is presented. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global artificial boundary conditions (ABCs) are simplified to local ones so that the computational efficiency is enhanced significantly. The introduced two local ABCs are implemented in a finite element computer program so that various seepage problems can be calculated. The two approaches are first verified by the computation of a one-dimensional radial flow problem, and then tentatively applied to more general two-dimensional cylindrical problems and plane problems. Numerical calculations show that the local ABCs can not only give good results for one-dimensional axisymmetric transient flow, but also applicable for more general problems, such as axisymmetric two-dimensional cylindrical problems, and even more general planar two-dimensional flow problems for well doublet and well groups. An important advantage of the latter local boundary is its applicability for seepage under rapidly changing unsteady boundary conditions, and even the computational results on the truncated boundary are usually quite satisfactory. In this aspect, it is superior over the former local boundary. Simulation of relatively long operational time demonstrates to certain extents the numerical stability of the local boundary. The solutions of the two local ABCs are compared with each other and with those obtained by using large element mesh, which proves the satisfactory performance and obvious superiority over the large mesh model.

Keywords: transient seepage, unbounded domain, artificial boundary condition, numerical simulation

Procedia PDF Downloads 220
8638 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian


In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: bio-heat, boussinesq, conduction, convection, eye

Procedia PDF Downloads 269
8637 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory

Authors: Korosh Khorshidi, Mohammad Khodadadi


In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.

Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate

Procedia PDF Downloads 317
8636 Wave Transmitting Boundary in Dynamic Analysis for an Elastoplastic Medium Using the Material Point Method

Authors: Chinh Phuong Do


Dynamic analysis of slope under seismic condition requires the elimination of spurious reflection at the bounded domain. This paper studies the performances of wave transmitting boundaries, including the standard viscous boundary and the viscoelastic boundary to the material point method (MPM) framework. First, analytical derivations of these non-reflecting conditions particularly to the implicit MPM are presented. Then, a number of benchmark and geotechnical examples will be shown. Overall, the results agree well with analytical solutions, indicating the ability to accurately simulate the radiation at the bounded domain.

Keywords: dynamic analysis, implicit, MPM, non-reflecting boundary

Procedia PDF Downloads 123
8635 Existence Solutions for Three Point Boundary Value Problem for Differential Equations

Authors: Mohamed Houas, Maamar Benbachir


In this paper, under weak assumptions, we study the existence and uniqueness of solutions for a nonlinear fractional boundary value problem. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using scheafer and krasnoselskii's fixed point theorem. At the end, some illustrative examples are presented.

Keywords: caputo derivative, boundary value problem, fixed point theorem, local conditions

Procedia PDF Downloads 360
8634 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki


This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 304
8633 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo


Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 211
8632 Finite Time Blow-Up and Global Solutions for a Semilinear Parabolic Equation with Linear Dynamical Boundary Conditions

Authors: Xu Runzhang, Yang Yanbing, Niu Yi, Zhang Mingyou, Liu Yu


For a class of semilinear parabolic equations with linear dynamical boundary conditions in a bounded domain, we obtain both global solutions and finite time blow-up solutions when the initial data varies in the phase space H1(Ω). Our main tools are the comparison principle, the potential well method and the concavity method. In particular, we discuss the behavior of the solutions with the initial data at critical and high energy level.

Keywords: high energy level, critical energy level, linear dynamical boundary condition, semilinear parabolic equation

Procedia PDF Downloads 376