Search results for: high sensitivity magnetic field sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28488

Search results for: high sensitivity magnetic field sensor

26088 Importance of CT and Timed Barium Esophagogram in the Contemporary Treatment of Patients with Achalasia

Authors: Sanja Jovanovic, Aleksandar Simic, Ognjan Skrobic, Dragan Masulovic, Aleksandra Djuric-Stefanovic

Abstract:

Introduction: Achalasia is an idiopathic primary esophageal motility disorder characterized by esophageal peristalsis and impaired swallow-induced relaxation of the lower esophageal sphincter (LES). It is a rare disease that affects both genders with an incidence of 1/100.000 and a prevalence rate of 10/100,000 per year. Objective: Laparoscopic Heller myotomy (LHM) represents a therapy of choice for patients with achalasia, providing excellent outcomes. The aim of this study was to evaluate the significance of computed tomography (CT) in analyzing achalasia subtypes and timed barium esophagogram (TBE) in evaluation of LHM success, as a part of standardized diagnostic protocol. Method: Fifty-one patients with achalasia, confirmed by manometric studies, in addition to standardized diagnostic methods, underwent CT and TBE. CT was done with multiplanar reconstruction, measuring the wall thickness above the esophago-gastric junction in the axial plane. TBE was performed preoperatively and two days postoperatively swallowing low-density barium sulfate, and plane upright frontal films were performed 1, 2 and 5 minutes after the ingestion. In all patients, LHM was done, and pre and postoperative height and weight of the barium column were compared. Results: According to CT findings we divided patients into 3 subtypes of achalasia according to wall thickness: < 4mm as subtype one, between 4 - 9mm as II, and > 10 mm as subtype 3. Correlation of manometric results, as a reference values, and CT findings indicated CT sensitivity of 90% and specificity of 70 % in establishing subtypes of achalasia. The preoperative values of TBE at 1, 2 and 5 minutes were: median barium column height 17.4 ± 7.4, 15.9 ± 6.2 and 13.9 ± 6.2 cm; median column width 5 ± 1.5, 4.7 ± 1.6 and 4.5 ± 1.8 cm respectively. LHM significantly reduced these values (height 7 ± 4.6, 5.8 ± 4.2, 3.7 ± 3.4 cm; width 2.9 ± 1.3, 2.6 ± 1.3 and 2.4 ± 1.4 cm), indicating the quantitative estimates of emptying as excellent (p value < 0.01). Conclusion: CT has high sensitivity and specificity in evaluation of achalasia subtypes, and can be introduced as an additional method for standardized evaluation of these patients. The quantitative assessment of TBE based on measurements of the barium column is an accurate and beneficial method, which adequately estimates esophageal emptying success of LHM.

Keywords: achalasia, computed tomography, esophagography, myotomy

Procedia PDF Downloads 229
26087 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image

Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias

Abstract:

Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.

Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals

Procedia PDF Downloads 69
26086 Characterization and Evaluation of South West Tunisian Clay Types as Insulation of Building Materials

Authors: Najah Majouri, Mohamed El Mankibi, Jalila Sghaier

Abstract:

This study examined the geotechnical, mineralogical, thermal and physical characterization of clays in south-west Tunisia. Its aims are to elaborate an insulator material based on the clay used in the field of building materials. The geotechnical study showed that the clay studied is characterized by a high degree of plasticity of 30.83%. High mineralogical findings showed that the sample consisted mainly of kaonolite and other clay minerals. The thermal and physical properties of the different samples are obtained by mixing clays, which indicates a promising future for the use of this type of clays in the production of insulating building materials.

Keywords: clay, energy-saving, insulator material, and South-West Tunisia.

Procedia PDF Downloads 82
26085 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation

Authors: Sandra Mendes

Abstract:

Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.

Keywords: field theory, knowledge, science, social work

Procedia PDF Downloads 350
26084 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)

Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil

Abstract:

Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.

Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles

Procedia PDF Downloads 227
26083 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure

Authors: Rajesh Agarwal

Abstract:

Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.

Keywords: capacitance, mobility, organic, thin film transistor

Procedia PDF Downloads 158
26082 High Injury Prevalence in Adolescent Field Hockey Players: Implications for Future Practice

Authors: Pillay J. D., D. De Wit, J. F. Ducray

Abstract:

Field hockey is a popular international sport which is played in more than 100 countries across the world. Due to the nature of hockey, players repeatedly perform a combination of forward flexion and rotational movements of the spine in order to strike the ball. These movements have been shown to increase the risk of pain and injury to the lumbar spine. The aim of this study was to determine the prevalence and incidence of low back pain (LBP) in male adolescent field hockey players and the characteristics of LBP in terms of location, chronicity, disability, and treatment sought, as well as its association with selected risk factors. A survey was conducted on 112 male adolescent field hockey players in the eThekwini Municipality of KwaZulu-Natal, South Africa. The questionnaire contained sections on the demographics of participants, general characteristics of participants, health and lifestyle characteristics, low back pain patterns, treatment of low back pain, and the level of disability associated with LBP. The data were statistically analysed using IBM SPSS version 25 with statistical significance set at p-value <0.05. Descriptive statistics such as mean and standard deviation were used to summarise responses to continuous variables as appropriate. Categorical variables were described using frequency tables. Associations between risk factors and low back pain were tested using Pearson’s chi-square test and t-tests as appropriate. A total of 68 questionnaires were completed for analysis (67% participation rate); the period prevalence of LBP was 63.2% (35.0%:beginning of the season, 32.4%:mid-season, 22.1%: end of season). Incidence was 38.2%. The most common location for LBP was the middle low back region (39.5%), and the most common duration of pain was a few hours (32.6%). Most participants (79.1%) did not classify their pain as a disability, and only 44.2% of participants received medical treatment for their LBP. An interesting finding was the association between hydration and LBP (p = 0.050), i.e., those individuals who did not hydrate frequently during matches and training were significantly more likely to experience LBP. The results of this study, although limited to a select group of adolescents, showed a higher prevalence of LBP than that of previous studies. More importantly, even though most participants did not experience LBP classified as a disability, LBP still had a large impact on participants, as nearly half of the participants consulted with a medical professional for treatment. Need for the application of further strategies in the prevention and management of LBP in field hockey, such as adequate warm-up and cool-down, stretching exercises, rest between sessions, etc., are recommended as simple strategies to reduce LBP prevalence.

Keywords: adolescents, field hockey players, incidence, low back pain, prevalence, risk factors

Procedia PDF Downloads 54
26081 Analysis of Bored Piles with and without Geogrid in a Selected Area in Kocaeli/Turkey

Authors: Utkan Mutman, Cihan Dirlik

Abstract:

Kocaeli/TURKEY district in which wastewater held in a chosen field increased property has made piling in order to improve the ground under the aeration basin. In this study, the degree of improvement the ground after bored piling held in the field were investigated. In this context, improving the ground before and after the investigation was carried out and that the solution values obtained by the finite element method analysis using Plaxis program have been made. The diffuses in the aeration basin whose treatment is to aide is influenced with and without geogrid on the ground. On the ground been improved, for the purpose of control of manufactured bored piles, pile continuity, and pile load tests were made. Taking into consideration both the data in the field as well as dynamic loads in the aeration basic, an analysis was made on Plaxis program and compared the data obtained from the analysis result and data obtained in the field.

Keywords: geogrid, bored pile, soil improvement, plaxis

Procedia PDF Downloads 263
26080 Fighting Competition Stress by Focusing the Psychological Training on the Vigor-Activity Mood States

Authors: Majid Al-Busafi, Alexe Cristina Ioana, Alexe Dan Iulian

Abstract:

The specific competition and pre-competition stress in professional track and field determined an increasing engagement, from a biological and psychological point of view, of the middle distance and long distance runners, to obtain the top performances that would get them to win in a competition. Under these conditions, if the psychological stress is not properly managed, the negative effects can lead to a total drop in self-confidence, and can affect the value, the talent, and the self-trust, which generates an even higher stress. One of the means at our disposal is the psychological training, specially adapted to the athlete's individual characteristics, to the characteristics of the athletic event, or of the competition. This paper aims to highlight certain original aspects regarding the effects of a specific psychological training program on the mood states characterized by psychological activation, vigor, vitality. The subjects were represented by 12 professional middle distance and long distance runners, subjected to an applicative intervention to which they have participated voluntarily, over the course of 6 months (a competition season). The results indicated that The application of a psychological training program, adapted to the track and field competition system, over a period of time characterized by high competition stress, can determine an increase in the states of vigor and psychological activation, at the same time diminishing those moods that have negative effects on the performance, in the middle distance and long distance running events. This conclusion confirms the hypothesis of this research.

Keywords: competition stress, psychological training, track and field, vigor-activity

Procedia PDF Downloads 453
26079 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 384
26078 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 429
26077 Mixed Number Algebra and Its Application

Authors: Md. Shah Alam

Abstract:

Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell’s equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation.

Keywords: mixed number, special relativity, quantum mechanics, electrodynamics, pauli matrix

Procedia PDF Downloads 358
26076 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients

Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu

Abstract:

Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.

Keywords: chest radiography, coronavirus, COVID-19, RALE score

Procedia PDF Downloads 176
26075 Exploring the Formation of High School Students’ Science Identity: A Qualitative Study

Authors: Sitong. Chen, Bing Wei

Abstract:

As a sociocultural concept, identity has increasingly gained attention in educational research, and the notion of students’ science identity has been widely discussed in the field of science education. Science identity was proved to be a key indicator of students’ learning engagement, persistence, and career intentions in science-related and STEM fields. Thus, a great deal of educational effort has been made to promote students’ science identity in former studies. However, most of this research was focused on students’ identity development during undergraduate and graduate periods, except for a few studies exploring high school students’ identity formation. High school has been argued as a crucial period for promoting science identity. This study applied a qualitative method to explore how high school students have come to form their science identities in previous learning and living experiences. Semi-structured interviews were conducted with 8 newly enrolled undergraduate students majoring in science-related fields. As suggested by the narrative data from interviews, students’ formation of science identities was driven by their five interrelated experiences: growing self-recognition as a science person, achieving success in learning science, getting recognized by influential others, being interested in science subjects, and informal science experiences in various contexts. Specifically, students’ success and achievement in science learning could facilitate their interest in science subjects and others’ recognition. And their informal experiences could enhance their interest and performance in formal science learning. Furthermore, students’ success and interest in science, as well as recognition from others together, contribute to their self-recognition. Based on the results of this study, some practical implications were provided for science teachers and researchers in enhancing high school students’ science identities.

Keywords: high school students, identity formation, learning experiences, living experiences, science identity

Procedia PDF Downloads 53
26074 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia PDF Downloads 400
26073 Vortex Flows under Effects of Buoyant-Thermocapillary Convection

Authors: Malika Imoula, Rachid Saci, Renee Gatignol

Abstract:

A numerical investigation is carried out to analyze vortex flows in a free surface cylinder, driven by the independent rotation and differentially heated boundaries. As a basic uncontrolled isothermal flow, we consider configurations which exhibit steady axisymmetric toroidal type vortices which occur at the free surface; under given rates of the bottom disk uniform rotation and for selected aspect ratios of the enclosure. In the isothermal case, we show that sidewall differential rotation constitutes an effective kinematic means of flow control: the reverse flow regions may be suppressed under very weak co-rotation rates, while an enhancement of the vortex patterns is remarked under weak counter-rotation. However, in this latter case, high rates of counter-rotation reduce considerably the strength of the meridian flow and cause its confinement to a narrow layer on the bottom disk, while the remaining bulk flow is diffusion dominated and controlled by the sidewall rotation. The main control parameters in this case are the rotational Reynolds number, the cavity aspect ratio and the rotation rate ratio defined. Then, the study proceeded to consider the sensitivity of the vortex pattern, within the Boussinesq approximation, to a small temperature gradient set between the ambient fluid and an axial thin rod mounted on the cavity axis. Two additional parameters are introduced; namely, the Richardson number Ri and the Marangoni number Ma (or the thermocapillary Reynolds number). Results revealed that reducing the rod length induces the formation of on-axis bubbles instead of toroidal structures. Besides, the stagnation characteristics are significantly altered under the combined effects of buoyant-thermocapillary convection. Buoyancy, induced under sufficiently high Ri, was shown to predominate over the thermocapillay motion; causing the enhancement (suppression) of breakdown when the rod is warmer (cooler) than the ambient fluid. However, over small ranges of Ri, the sensitivity of the flow to surface tension gradients was clearly evidenced and results showed its full control over the occurrence and location of breakdown. In particular, detailed timewise evolution of the flow indicated that weak thermocapillary motion was sufficient to prevent the formation of toroidal patterns. These latter detach from the surface and undergo considerable size reduction while moving towards the bulk flow before vanishing. Further calculations revealed that the pattern reappears with increasing time as steady bubble type on the rod. However, in the absence of the central rod and also in the case of small rod length l, the flow evolved into steady state without any breakdown.

Keywords: buoyancy, cylinder, surface tension, toroidal vortex

Procedia PDF Downloads 356
26072 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite

Authors: Mohamed M. Emara, Heba Ashraf

Abstract:

This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.

Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability

Procedia PDF Downloads 523
26071 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 306
26070 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 199
26069 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 349
26068 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.

Keywords: permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor

Procedia PDF Downloads 327
26067 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern

Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc

Abstract:

The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.

Keywords: phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization

Procedia PDF Downloads 500
26066 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.

Keywords: speed model, artificial neural network, arterial, mixed traffic

Procedia PDF Downloads 382
26065 Numerical Investigation on Optimizing Fatigue Life in a Lap Joint Structure

Authors: P. Zamani, S. Mohajerzadeh, R. Masoudinejad, K. Farhangdoost

Abstract:

The riveting process is one of the important ways to keep fastening the lap joints in aircraft structures. Failure of aircraft lap joints directly depends on the stress field in the joint. An important application of riveting process is in the construction of aircraft fuselage structures. In this paper, a 3D finite element method is carried out in order to optimize residual stress field in a riveted lap joint and also to estimate its fatigue life. In continue, a number of experiments are designed and analyzed using design of experiments (DOE). Then, Taguchi method is used to select an optimized case between different levels of each factor. Besides that, the factor which affects the most on residual stress field is investigated. Such optimized case provides the maximum residual stress field. Fatigue life of the optimized joint is estimated by Paris-Erdogan law. Stress intensity factors (SIFs) are calculated using both finite element analysis and experimental formula. In addition, the effect of residual stress field, geometry, and secondary bending are considered in SIF calculation. A good agreement is found between results of such methods. Comparison between optimized fatigue life and fatigue life of other joints has shown an improvement in the joint’s life.

Keywords: fatigue life, residual stress, riveting process, stress intensity factor, Taguchi method

Procedia PDF Downloads 445
26064 Frustration Measure for Dipolar Spin Ice and Spin Glass

Authors: Konstantin Nefedev, Petr Andriushchenko

Abstract:

Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.

Keywords: frustrations, parameter of order, statistical physics, magnetism

Procedia PDF Downloads 168
26063 Facile Synthesis of CuO Nanosheets on Cu Foil for H2O2 Detection

Authors: Yu-Kuei Hsu, Yan-Gu Lin

Abstract:

A facile and simple fabrication of copper(II) oxide (CuO) nanosheet on copper foil as nanoelectrode for H2O2 sensing application was proposed in this study. The spontaneous formation of CuO nanosheets by immersing the copper foil into 0.1 M NaOH aqueous solution for 48 hrs was carried out at room temperature. The sheet-like morphology with several ten nanometers in thickness and ~500 nm in width was observed by SEM. Those nanosheets were confirmed the monoclinic-phase CuO by the structural analysis of XRD and Raman spectra. The directly grown CuO nanosheets film is mechanically stable and offers an excellent electrochemical sensing platform. The CuO nanosheets electrode shows excellent electrocatalytic response to H2O2 with significantly lower overpotentials for its oxidation and reduction and also exhibits a fast response and high sensitivity for the amperometric detection of H2O2. The novel spontaneously grown CuO nanosheets electrode is readily applicable to other analytes and has great potential applications in the electrochemical detection.

Keywords: CuO, nanosheets, H2O2 detection, Cu foil

Procedia PDF Downloads 286
26062 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging

Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini

Abstract:

Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.

Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation

Procedia PDF Downloads 127
26061 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 75
26060 Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer

Authors: Godwin Dennison, C. E. Boulind, O. Gould, B. de Lacy Costello, J. Allison, P. White, P. Ewings, A. Wicaksono, N. J. Curtis, A. Pullyblank, D. Jayne, J. A. Covington, N. Ratcliffe, N. K. Francis

Abstract:

Background: Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. Methods: A prospective, multi-centre, observational feasibility study was performed across three sites. Patients referred on NHS fast-track pathways for potential CRC provided a urine sample which underwent Gas Chromatography Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. Results: 558 patients participated with 23 (4.1%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity=0.878, specificity=0.882, AUROC=0.884). Conclusion: Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified therefore suggesting VOC analysis may have future utility as a triage tool. Acknowledgment: Funding: NIHR Research for Patient Benefit grant (ref: PB-PG-0416-20022).

Keywords: colorectal cancer, volatile organic compound, gas chromatography mass spectrometry, field asymmetric ion mobility spectrometry, selected ion flow tube mass spectrometry

Procedia PDF Downloads 88
26059 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate

Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas

Abstract:

Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.

Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks

Procedia PDF Downloads 101