Search results for: health impact assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22140

Search results for: health impact assessment

30 Effect of Black Cumin (Nigella sativa) Extract on Damaged Brain Cells

Authors: Batul Kagalwala

Abstract:

The nervous system is made up of complex delicate structures such as the spinal cord, peripheral nerves and the brain. These are prone to various types of injury ranging from neurodegenerative diseases to trauma leading to diseases like Parkinson's, Alzheimer's, multiple sclerosis, amyotrophic lateral sclerosis (ALS), multiple system atrophy etc. Unfortunately, because of the complicated structure of nervous system, spontaneous regeneration, repair and healing is seldom seen due to which brain damage, peripheral nerve damage and paralysis from spinal cord injury are often permanent and incapacitating. Hence, innovative and standardized approach is required for advance treatment of neurological injury. Nigella sativa (N. sativa), an annual flowering plant native to regions of southern Europe and Asia; has been suggested to have neuroprotective and anti-seizures properties. Neuroregeneration is found to occur in damaged cells when treated using extract of N. sativa. Due to its proven health benefits, lots of experiments are being conducted to extract all the benefits from the plant. The flowers are delicate and are usually pale blue and white in color with small black seeds. These seeds are the source of active components such as 30–40% fixed oils, 0.5–1.5% essential oils, pharmacologically active components containing thymoquinone (TQ), ditimoquinone (DTQ) and nigellin. In traditional medicine, this herb was identified to have healing properties and was extensively used Middle East and Far East for treating diseases such as head ache, back pain, asthma, infections, dysentery, hypertension, obesity and gastrointestinal problems. Literature studies have confirmed the extract of N. sativa seeds and TQ have inhibitory effects on inducible nitric oxide synthase and production of nitric oxide as well as anti-inflammatory and anticancer activities. Experimental investigation will be conducted to understand which ingredient of N. sativa causes neuroregeneration and roots to its healing property. An aqueous/ alcoholic extract of N. sativa will be made. Seed oil is also found to have used by researchers to prepare such extracts. For the alcoholic extracts, the seeds need to be powdered and soaked in alcohol for a period of time and the alcohol must be evaporated using rotary evaporator. For aqueous extracts, the powder must be dissolved in distilled water to obtain a pure extract. The mobile phase will be the extract while the suitable stationary phase (substance that is a good adsorbent e.g. silica gels, alumina, cellulose etc.) will be selected. Different ingredients of N. sativa will be separated using High Performance Liquid Chromatography (HPLC) for treating damaged cells. Damaged brain cells will be treated individually and in different combinations of 2 or 3 compounds for different intervals of time. The most suitable compound or a combination of compounds for the regeneration of cells will be determined using DOE methodology. Later the gene will also be determined and using Polymerase Chain Reaction (PCR) it will be replicated in a plasmid vector. This plasmid vector shall be inserted in the brain of the organism used and replicated within. The gene insertion can also be done by the gene gun method. The gene in question can be coated on a micro bullet of tungsten and bombarded in the area of interest and gene replication and coding shall be studied. Investigation on whether the gene replicates in the organism or not will be examined.

Keywords: black cumin, brain cells, damage, extract, neuroregeneration, PCR, plasmids, vectors

Procedia PDF Downloads 656
29 Genetic Diversity of Exon-20 of the IIS6 of the Voltage Gated Sodium Channel Gene from Pyrethroid Resistant Anopheles Mosquitoes in Sudan Savannah Region of Jigawa State

Authors: Asma'u Mahe, Abdullahi A. Imam, Adamu J. Alhassan, Nasiru Abdullahi, Sadiya A. Bichi, Nura Lawal, Kamaluddeen Babagana

Abstract:

Malaria is a disease with global health significance. It is caused by parasites and transmitted by Anopheles mosquitoes. Increase in insecticide resistance threatens the disease vector control. The strength of selection pressure acting on a mosquito population in relation to insecticide resistance can be assess by determining the genetic diversity of a fragment spanning exon- 20 of IIS6 of the voltage gated sodium channel (VGSC). Larval samples reared to adulthood were identified and kdr (knock down resistance) profile was determined. The DNA sequences were used to assess the patterns of genetic differentiation by determining the levels of genetic variability between the Anopheles mosquitoes. Genetic differentiation of the Anopheles mosquitoes based on a portion of the voltage gated sodium channel gene was obtained. Polymorphisms were detected; sequence variation and analysis were presented as a phylogenetic tree. Phylogenetic tree of VGSC haplotypes was constructed for samples of the Anopheles mosquitoes using the maximum likelihood method in MEGA 6.0 software. DNA sequences were edited using BioEdit sequence editor. The edited sequences were aligned with reference sequence (Kisumu strain). Analyses were performed as contained in dnaSP 5.10. Results of genetic parameters of polymorphism and haplotype reconstruction were presented in count. Twenty sequences were used for the analysis. Regions selected were 1- 576, invariable (monomorphic) sites were 460 while variable (polymorphic) sites were 5 giving the number of total mutations observed in this study. Mutations obtained from the study were at codon 105: TTC- Phenylalanine replaces TCC- Serine, codon 513: TAG- Termination replaces TTG- Leucine, codon 153, 300 and 553 mutations were non-synonymous. From the constructed phylogenetic tree, some groups were shown to be closer with Exon20Gambiae Kisumu (Reference strain) having some genetic distance, while 5-Exon20Gambiae-F I13.ab1, 18-Exon20Gambiae-F C17.ab1, and 2-Exon20Gambiae-F C13.ab1 clustered together genetically differentiated away from others. Mutations observed in this study can be attributed to the high insecticide resistance profile recorded in the study areas. Haplotype networks of pattern of genetic variability and polymorphism for the fragment of the VGSC sequences of sampled Anopheles mosquitoes revealed low haplotypes for the present study. Haplotypes are set of closely linked DNA variation on X-chromosome. Haplotypes were scaled accordingly to reflect their respective frequencies. Low haplotype number, four VGSC-1014F haplotypes were observed in this study. A positive association was previously established between low haplotype number of VGSC diversity and pyrethroid resistance through kdr mechanism. Significant values at (P < 0.05) of Tajima D and Fu and Li D’ were observed for some of the results indicating possible signature of positive selection on the fragment of VGSC in the study. This is the first report of VGSC-1014F in the study site. Based on the results, the mutation was present in low frequencies. However, the roles played by the observed mutations need further investigation. Mutations, environmental factors among others can affect genetic diversity. The study area has recorded increase in insecticide resistance that can affect vector control in the area. This finding might affect the efforts made against malaria. Sequences were deposited in GenBank for Accession Number.

Keywords: anopheles mosquitoes, insecticide resistance, kdr, malaria, voltage gated sodium channel

Procedia PDF Downloads 62
28 The Usefulness of Medical Scribes in the Emengecy Department

Authors: Victor Kang, Sirene Bellahnid, Amy Al-Simaani

Abstract:

Efficient documentation and completion of clerical tasks are pillars of efficient patient-centered care in acute settings such as the emergency department (ED). Medical scribes aid physicians with documentation, navigation of electronic health records, results gathering, and communication coordination with other healthcare teams. However, the use of medical scribes is not widespread, with some hospitals even continuing to discontinue their programs. One reason for this could be the lack of studies that have outlined concrete improvements in efficiency and patient and provider satisfaction in emergency departments before and after incorporating scribes. Methods: We conducted a review of the literature concerning the implementation of a medical scribe program and emergency department performance. For this review, a narrative synthesis accompanied by textual commentaries was chosen to present the selected papers. PubMed was searched exclusively. Initially, no date limits were set, but seeing as the electronic medical record was officially implemented in Canada in 2013, studies published after this date were preferred as they provided insight into the interplay between its implementation and scribes on quality improvement. Results: Throughput, efficiency, and cost-effectiveness were the most commonly used parameters in evaluating scribes in the Emergency Department. Important throughput metrics, specifically door-to-doctor and disposition time, were significantly decreased in emergency departments that utilized scribes. Of note, this was shown to be the case in community hospitals, where the burden of documentation and clerical tasks would fall directly upon the attending physician. Academic centers differ in that they rely heavily on residents and students; so the implementation of scribes has been shown to have limited effect on these metrics. However, unique to academic centers was the provider’s perception of incrased time for teaching was unique to academic centers. Consequently, providers express increased work satisfaction in relation to time spent with patients and in teaching. Patients, on the other hand, did not demonstrate a decrease in satisfaction in regards to the care that was provided, but there was no significant increase observed either. Of the studies we reviewed, one of the biggest limitations was the lack of significance in the data. While many individual studies reported that medical scribes in emergency rooms improved relative value units, patient satisfaction, provider satisfaction, and increased number of patients seen, there was no statistically significant improvement in the above criteria when compiled in a systematic review. There is also a clear publication bias; very few studies with negative results were published. To prove significance, data from more emergency rooms with scribe programs would need to be compiled which also includes emergency rooms who did not report noticeable benefits. Furthermore, most data sets focused only on scribes in academic centers. Conclusion: Ultimately, the literature suggests that while emergency room physicians who have access to medical scribes report higher satisfaction due to lower clerical burdens and can see more patients per shift, there is still variability in terms of patient and provider satisfaction. Whether or not this variability exists due to differences in training (in-house trainees versus contractors), population profile (adult versus pediatric), setting (academic versus community), or which shifts scribe work cannot be determined based on the studies that exist. Ultimately, more scribe programs need to be evaluated to determine whether these variables affect outcomes and prove whether scribes significantly improve emergency room efficiency.

Keywords: emergency medicine, medical scribe, scribe, documentation

Procedia PDF Downloads 89
27 A Self-Heating Gas Sensor of SnO2-Based Nanoparticles Electrophoretic Deposited

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Sonia M. Zanetti, Mario Cilense, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

The contamination of the environment has been one of the biggest problems of our time, mostly due to developments of many industries. SnO2 is an n-type semiconductor with band gap about 3.5 eV and has its electrical conductivity dependent of type and amount of modifiers agents added into matrix ceramic during synthesis process, allowing applications as sensing of gaseous pollutants on ambient. The chemical synthesis by polymeric precursor method consists in a complexation reaction between tin ion and citric acid at 90 °C/2 hours and subsequently addition of ethyleneglycol for polymerization at 130 °C/2 hours. It also prepared polymeric resin of zinc, cobalt and niobium ions. Stoichiometric amounts of the solutions were mixed to obtain the systems (Zn, Nb)-SnO2 and (Co, Nb) SnO2 . The metal immobilization reduces its segregation during the calcination resulting in a crystalline oxide with high chemical homogeneity. The resin was pre-calcined at 300 °C/1 hour, milled in Atritor Mill at 500 rpm/1 hour, and then calcined at 600 °C/2 hours. X-Ray Diffraction (XDR) indicated formation of SnO2 -rutile phase (JCPDS card nº 41-1445). The characterization by Scanning Electron Microscope of High Resolution showed spherical ceramic powder nanostructured with 10-20 nm of diameter. 20 mg of SnO2 -based powder was kept in 20 ml of isopropyl alcohol and then taken to an electrophoretic deposition (EPD) system. The EPD method allows control the thickness films through the voltage or current applied in the electrophoretic cell and by the time used for deposition of ceramics particles. This procedure obtains films in a short time with low costs, bringing prospects for a new generation of smaller size devices with easy integration technology. In this research, films were obtained in an alumina substrate with interdigital electrodes after applying 2 kV during 5 and 10 minutes in cells containing alcoholic suspension of (Zn, Nb)-SnO2 and (Co, Nb) SnO2 of powders, forming a sensing layer. The substrate has designed integrated micro hotplates that provide an instantaneous and precise temperature control capability when a voltage is applied. The films were sintered at 900 and 1000 °C in a microwave oven of 770 W, adapted by the research group itself with a temperature controller. This sintering is a fast process with homogeneous heating rate which promotes controlled growth of grain size and also the diffusion of modifiers agents, inducing the creation of intrinsic defects which will change the electrical characteristics of SnO2 -based powders. This study has successfully demonstrated a microfabricated system with an integrated micro-hotplate for detection of CO and NO2 gas at different concentrations and temperature, with self-heating SnO2 - based nanoparticles films, being suitable for both industrial process monitoring and detection of low concentrations in buildings/residences in order to safeguard human health. The results indicate the possibility for development of gas sensors devices with low power consumption for integration in portable electronic equipment with fast analysis. Acknowledgments The authors thanks to the LMA-IQ for providing the FEG-SEM images, and the financial support of this project by the Brazilian research funding agencies CNPq, FAPESP 2014/11314-9 and CEPID/CDMF- FAPESP 2013/07296-2.

Keywords: chemical synthesis, electrophoretic deposition, self-heating, gas sensor

Procedia PDF Downloads 274
26 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 55
25 An Innovation Decision Process View in an Adoption of Total Laboratory Automation

Authors: Chia-Jung Chen, Yu-Chi Hsu, June-Dong Lin, Kun-Chen Chan, Chieh-Tien Wang, Li-Ching Wu, Chung-Feng Liu

Abstract:

With fast advances in healthcare technology, various total laboratory automation (TLA) processes have been proposed. However, adopting TLA needs quite high funding. This study explores an early adoption experience by Taiwan’s large-scale hospital group, the Chimei Hospital Group (CMG), which owns three branch hospitals (Yongkang, Liouying and Chiali, in order by service scale), based on the five stages of Everett Rogers’ Diffusion Decision Process. 1.Knowledge stage: Over the years, two weaknesses exists in laboratory department of CMG: 1) only a few examination categories (e.g., sugar testing and HbA1c) can now be completed and reported within a day during an outpatient clinical visit; 2) the Yongkang Hospital laboratory space is dispersed across three buildings, resulting in duplicated investment in analysis instruments and inconvenient artificial specimen transportation. Thus, the senior management of the department raised a crucial question, was it time to process the redesign of the laboratory department? 2.Persuasion stage: At the end of 2013, Yongkang Hospital’s new building and restructuring project created a great opportunity for the redesign of the laboratory department. However, not all laboratory colleagues had the consensus for change. Thus, the top managers arranged a series of benchmark visits to stimulate colleagues into being aware of and accepting TLA. Later, the director of the department proposed a formal report to the top management of CMG with the results of the benchmark visits, preliminary feasibility analysis, potential benefits and so on. 3.Decision stage: This TLA suggestion was well-supported by the top management of CMG and, finally, they made a decision to carry out the project with an instrument-leasing strategy. After the announcement of a request for proposal and several vendor briefings, CMG confirmed their laboratory automation architecture and finally completed the contracts. At the same time, a cross-department project team was formed and the laboratory department assigned a section leader to the National Taiwan University Hospital for one month of relevant training. 4.Implementation stage: During the implementation, the project team called for regular meetings to review the results of the operations and to offer an immediate response to the adjustment. The main project tasks included: 1) completion of the preparatory work for beginning the automation procedures; 2) ensuring information security and privacy protection; 3) formulating automated examination process protocols; 4) evaluating the performance of new instruments and the instrument connectivity; 5)ensuring good integration with hospital information systems (HIS)/laboratory information systems (LIS); and 6) ensuring continued compliance with ISO 15189 certification. 5.Confirmation stage: In short, the core process changes include: 1) cancellation of signature seals on the specimen tubes; 2) transfer of daily examination reports to a data warehouse; 3) routine pre-admission blood drawing and formal inpatient morning blood drawing can be incorporated into an automatically-prepared tube mechanism. The study summarizes below the continuous improvement orientations: (1) Flexible reference range set-up for new instruments in LIS. (2) Restructure of the specimen category. (3) Continuous review and improvements to the examination process. (4) Whether installing the tube (specimen) delivery tracks need further evaluation.

Keywords: innovation decision process, total laboratory automation, health care

Procedia PDF Downloads 418
24 Enabling and Ageing-Friendly Neighbourhoods: An Eye-Tracking Study of Multi-Sensory Experience of Senior Citizens in Singapore

Authors: Zdravko Trivic, Kelvin E. Y. Low, Darko Radovic, Raymond Lucas

Abstract:

Our understanding and experience of the built environment are primarily shaped by multi‐sensory, emotional and symbolic modes of exchange with spaces. Associated sensory and cognitive declines that come with ageing substantially affect the overall quality of life of the elderly citizens and the ways they perceive and use urban environment. Reduced mobility and increased risk of falls, problems with spatial orientation and communication, lower confidence and independence levels, decreased willingness to go out and social withdrawal are some of the major consequences of sensory declines that challenge almost all segments of the seniors’ everyday living. However, contemporary urban environments are often either sensory overwhelming or depleting, resulting in physical, mental and emotional stress. Moreover, the design and planning of housing neighbourhoods hardly go beyond the passive 'do-no-harm' and universal design principles, and the limited provision of often non-integrated eldercare and inter-generational facilities. This paper explores and discusses the largely neglected relationships between the 'hard' and 'soft' aspects of housing neighbourhoods and urban experience, focusing on seniors’ perception and multi-sensory experience as vehicles for design and planning of high-density housing neighbourhoods that are inclusive and empathetic yet build senior residents’ physical and mental abilities at different stages of ageing. The paper outlines methods and key findings from research conducted in two high-density housing neighbourhoods in Singapore with aims to capture and evaluate multi-sensorial qualities of two neighbourhoods from the perspective of senior residents. Research methods employed included: on-site sensory recordings of 'objective' quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, spatial mapping of patterns of elderly users’ transient and stationary activity, socio-sensory perception surveys and sensorial journeys with local residents using eye-tracking glasses, and supplemented by walk-along or post-walk interviews. The paper develops a multi-sensory framework to synthetize, cross-reference, and visualise the activity and spatio-sensory rhythms and patterns and distill key issues pertinent to ageing-friendly and health-supportive neighbourhood design. Key findings show senior residents’ concerns with walkability, safety, and wayfinding, overall aesthetic qualities, cleanliness, smell, noise, and crowdedness in their neighbourhoods, as well as the lack of design support for all-day use in the context of Singaporean tropical climate and for inter-generational social interaction. The (ongoing) analysis of eye-tracking data reveals the spatial elements of senior residents’ look at and interact with the most frequently, with the visual range often directed towards the ground. With capacities to meaningfully combine quantitative and qualitative, measured and experienced sensory data, multi-sensory framework shows to be fruitful for distilling key design opportunities based on often ignored aspects of subjective and often taken-for-granted interactions with the familiar outdoor environment. It offers an alternative way of leveraging the potentials of housing neighbourhoods to take a more active role in enabling healthful living at all stages of ageing.

Keywords: ageing-friendly neighbourhoods, eye-tracking, high-density environment, multi-sensory approach, perception

Procedia PDF Downloads 153
23 Biological Soil Crust Effects on Dust Control Around the Urmia Lake

Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh

Abstract:

Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.

Keywords: wind erosion, algae, cyanobacteria, carbohydrate

Procedia PDF Downloads 61
22 Capsaicin Derivatives Enhanced Activity of α1β2γ2S-Aminobutyric Acid Type a Receptor Expressed in Xenopus laevis Oocytes

Authors: Jia H. Wong, Jingli Zhang, Habsah Mohamad, Iswatun H. Abdullah Ripain, Muhammad Bilal, Amelia J. Lloyd, Abdul A. Mohamed Yusoff, Jafri M. Abdullah

Abstract:

Epilepsy is one of the most common neurological diseases affecting more than 50 million of people worldwide. Epilepsy is a state of recurrent, spontaneous seizures with multiple syndromes and symptoms of different causes of brain dysfunction, prognosis, and treatments; characterized by transient, occasional and stereotyped interruptions of behavior whereby the excitatory-inhibitory activities within the central nervous system (CNS) are thrown out of balance due to various kinds of interferences. The goal of antiepileptic treatment is to enable patients to be free from seizures or to achieve control of seizures through surgical treatment and/or pharmacotherapy. Pharmacotherapy through AED plays an important role especially in countries with epilepsy treatment gap due to costs and availability of health facilities, skills and resources, yet there are about one-third of the people with epilepsy have drug-resistant seizures. Hence, this poses considerable challenges to the healthcare system and the effort in providing cost-effective treatment as well as the search for alternatives to treatment and management of epilepsy. Enhancement of γ-aminobutyric acid (GABA)-mediated inhibitory neurotransmission is one of the key mechanisms of actions of antiepileptic drugs. GABA type > a receptors (GABAAR) are ligand-gated ion channels that mediate rapid inhibitory neurotransmission upon the binding of GABA with a heteropentameric structure forming a central pore that is permeable to the influx of chloride ions in its activated state. The major isoform of GABAA receptors consists of two α1, two β2, and one γ2 subunit. It is the most abundantly expressed combinations in the brain and the most commonly researched through Xenopus laevis oocytes. With the advancing studies on ethnomedicine and traditional treatments using medicinal plants, increasing evidence reveal that spice and herb plants with medicinal properties play an important role in the treatment of ailments within communities across different cultures. Capsaicin is the primary natural capsaicinoid in hot peppers of plant genus Capsicum, consist of an aromatic ring, an amide linkage and a hydrophobic side chain. The study showed that capsaicins conferred neuroprotection in status epilepticus mouse models through anti-ictogenic, hypothermic, antioxidative, anti-inflammatory, and anti-apoptotic actions in a dose-dependent manner. In this study, five capsaicin derivatives were tested for their ability to increase the GABA-induced chloride current on α1β2γ2S of GABAAR expressed on Xenopus laevis oocytes using the method of two-microelectrode voltage clamp. Two of the capsaicin derivatives, IS5 (N-(4-hydroxy-3-methoxybenzyl)-3-methylbutyramide) and IS10 (N-(4-hydroxy-3-methoxybenzyl)-decanamide) at a concentration of 30µM were able to significantly increase the GABA-induced chloride current with p=0.002 and p=0.026 respectively. This study were able to show the enhancement effect of two capsaicin derivatives with moderate length of hydrocarbon chain on this receptor subtype, revealing the promising inhibitory activity of capsaicin derivatives through enhancement of GABA-induced chloride current and further investigations should be carried out to verify its antiepileptic effects in animal models.

Keywords: α1β2γ2 GABAA receptors, α1β2γ2S, antiepileptic, capsaicin derivatives, two-microelectrode voltage clamp, Xenopus laevis oocytes

Procedia PDF Downloads 360
21 Evaluation of Functional Properties of Protein Hydrolysate from the Fresh Water Mussel Lamellidens marginalis for Nutraceutical Therapy

Authors: Jana Chakrabarti, Madhushrita Das, Ankhi Haldar, Roshni Chatterjee, Tanmoy Dey, Pubali Dhar

Abstract:

High incidences of Protein Energy Malnutrition as a consequence of low protein intake are quite prevalent among the children in developing countries. Thus prevention of under-nutrition has emerged as a critical challenge to India’s developmental Planners in recent times. Increase in population over the last decade has led to greater pressure on the existing animal protein sources. But these resources are currently declining due to persistent drought, diseases, natural disasters, high-cost of feed, and low productivity of local breeds and this decline in productivity is most evident in some developing countries. So the need of the hour is to search for efficient utilization of unconventional low-cost animal protein resources. Molluscs, as a group is regarded as under-exploited source of health-benefit molecules. Bivalve is the second largest class of phylum Mollusca. Annual harvests of bivalves for human consumption represent about 5% by weight of the total world harvest of aquatic resources. The freshwater mussel Lamellidens marginalis is widely distributed in ponds and large bodies of perennial waters in the Indian sub-continent and well accepted as food all over India. Moreover, ethno-medicinal uses of the flesh of Lamellidens among the rural people to treat hypertension have been documented. Present investigation thus attempts to evaluate the potential of Lamellidens marginalis as functional food. Mussels were collected from freshwater ponds and brought to the laboratory two days before experimentation for acclimatization in laboratory conditions. Shells were removed and fleshes were preserved at- 20oC until analysis. Tissue homogenate was prepared for proximate studies. Fatty acids and amino acids composition were analyzed. Vitamins, Minerals and Heavy metal contents were also studied. Mussel Protein hydrolysate was prepared using Alcalase 2.4 L and degree of hydrolysis was evaluated to analyze its Functional properties. Ferric Reducing Antioxidant Power (FRAP) and DPPH Antioxidant assays were performed. Anti-hypertensive property was evaluated by measuring Angiotensin Converting Enzyme (ACE) inhibition assay. Proximate analysis indicates that mussel meat contains moderate amount of protein (8.30±0.67%), carbohydrate (8.01±0.38%) and reducing sugar (4.75±0.07%), but less amount of fat (1.02±0.20%). Moisture content is quite high but ash content is very low. Phospholipid content is significantly high (19.43 %). Lipid constitutes, substantial amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which have proven prophylactic values. Trace elements are found present in substantial amount. Comparative study of proximate nutrients between Labeo rohita, Lamellidens and cow’s milk indicates that mussel meat can be used as complementary food source. Functionality analyses of protein hydrolysate show increase in Fat absorption, Emulsification, Foaming capacity and Protein solubility. Progressive anti-oxidant and anti-hypertensive properties have also been documented. Lamellidens marginalis can thus be regarded as a functional food source as this may combine effectively with other food components for providing essential elements to the body. Moreover, mussel protein hydrolysate provides opportunities for utilizing it in various food formulations and pharmaceuticals. The observations presented herein should be viewed as a prelude to what future holds.

Keywords: functional food, functional properties, Lamellidens marginalis, protein hydrolysate

Procedia PDF Downloads 416
20 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center

Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.

Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development

Procedia PDF Downloads 80
19 Optical Coherence Tomography in Differentiation of Acute and Non-Healing Wounds

Authors: Ananya Barui, Provas Banerjee, Jyotirmoy Chatterjee

Abstract:

Application of optical technology in medicine and biology has a long track-record. In this endeavor, OCT is able to attract both engineers and biologists to work together in the field of photonics for establishing a striking non-invasive imaging technology. In contrast to other in vivo imaging modalities like Raman imaging, confocal imaging, two-photon microscopy etc. which can perform in vivo imaging upto 100-200 micron depth due to limitation in numerical aperture or scattering, however, OCT can achieve high-resolution imaging upto few millimeters of tissue structures depending on their refractive index in different anatomical location. This tomographic system depends on interference of two light waves in an interferometer to produce a depth profile of specimen. In wound healing, frequent collection of biopsies for follow-up of repair process could be avoided by such imaging technique. Real time skin OCT (the optical biopsy) has efficacy in deeper and faster illumination of cutaneou tissue to acquire high resolution cross sectional images of their internal micro-structure. Swept Source-OCT (SS-OCT), a novel imaging technique, can generate high-speed depth profile (~ 2 mm) of wound at a sweeping rate of laser with micron level resolution and optimum coherent length of 5-6 mm. Normally multi-layered skin tissue depicts different optical properties along with variation in thickness, refractive index and composition (i.e. keratine layer, water, fat etc.) according to their anatomical location. For instance, stratum corneum, the upper-most and relatively dehydrated layer of epidermis reflects more light and produces more lucid and a sharp demarcation line with rest of the hydrated epidermal region. During wound healing or regeneration, optical properties of cutaneous tissue continuously altered with maturation of wound bed. More mature and less hydrated tissue component reflects more light and becomes visible as a brighter area in comparison to immature region which content higher amount water or fat that depicts as a darker area in OCT image. Non-healing wound possess prolonged inflammation and inhibits nascent proliferative stage. Accumulation of necrotic tissues also prevents the repair of non-healing wounds. Due to high resolution and potentiality to reflect the compositional aspects of tissues in terms of their optical properties, this tomographic method may facilitate in differentiating non-healing and acute wounds in addition to clinical observations. Non-invasive OCT offers better insight regarding specific biological status of tissue in health and pathological conditions, OCT images could be associated with histo-pathological ‘gold standard’. This correlated SS-OCT and microscopic evaluation of the wound edges can provide information regarding progressive healing and maturation of the epithelial components. In the context of searching analogy between two different imaging modalities, their relative performances in imaging of healing bed were estimated for probing an alternative approach. Present study validated utility of SS-OCT in revealing micro-anatomic structure in the healing bed with newer information. Exploring precise correspondence of OCT images features with histo-chemical findings related to epithelial integrity of the regenerated tissue could have great implication. It could establish the ‘optical biopsy’ as a potent non-invasive diagnostic tool for cutaneous pathology.

Keywords: histo-pathology, non invasive imaging, OCT, wound healing

Procedia PDF Downloads 278
18 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis

Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu

Abstract:

Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.

Keywords: GPT, phantom-less QCT, large language model, osteoporosis

Procedia PDF Downloads 70
17 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms

Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal

Abstract:

A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.

Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating

Procedia PDF Downloads 154
16 Preparation and Struggle of Two Generations for Future Care: A Study of Intergenerational Care Planning among Mainland Immigrant Ageing Families in Hong Kong

Authors: Xue Bai, Ranran He, Chang Liu

Abstract:

Care planning before the onset of intensive care needs can benefit older adults’ psychological well-being and increases families’ ability to manage caregiving crises and cope with care transitions. Effective care planning requires collaborative ‘team-work’ in families. However, future care planning has not been substantially examined in intergenerational or family contexts, let alone among immigrant families who have to face particular challenges in parental caregiving. From a family systems perspective, this study intends to explore the extent, processes, and contents of intergenerational care planning of Mainland immigrant ageing families in Hong Kong and to examine the intergenerational congruence and discrepancies in the care planning process. Adopting a qualitative research design, semi-structured in-depth interviews were conducted with 17 adult child-older parent pairs and another 33 adult children. In total, 50 adult children who migrated to Hong Kong after the age of 18 with more than three years’ work experience in Hong Kong had at least one parent aged over 55 years old who was not a Hong Kong resident and considered his/herself as the primary caregiver of the parent were recruited. Seventeen ageing parents of the recruited adult children were invited for dyadic interviews. Scarcity of caregiving resources in the context of cross-border migration, intergenerational discrepancies in care planning stages, both generations’ struggle and ambivalence toward filial care, intergenerational transmission of care values, and facilitating role of accumulated family capital in care preparation were primary themes concluded from participants’ narratives. Compared with ageing parents, immigrant adult children generally displayed lower levels of care planning. Although with a strong awareness of parents’ future care needs, few adult children were found engaged in concrete planning activities. This is largely due to their uncertainties toward future life and career, huge work and living pressure, the relatively good health status of their parents, and restrictions of public welfare policies in the receiving society. By contrast, children’s cross-border migration encouraged ageing parents to have early and clear preparation for future care. Ageing parents mostly expressed low filial care expectations when realizing the scarcity of family caregiving resources in the cross-border context. Even though they prefer in-person support from children, most of them prepare themselves for independent ageing to prioritize the next generation’s needs or choose to utilize paid services, welfare systems, friend networks, or extended family networks in their sending society. Adult children were frequently found caught in the dilemma of desiring to provide high quality and in-person support for their parents but lacking sufficient resources. Notably, a salient pattern of intergenerational transmission in terms of family and care values and ideal care arrangement emerged from intergenerational care preparation. Moreover, the positive role of accumulated family capital generated by a reunion in care preparation and joint decision-making were also identified. The findings of the current study will enhance professionals’ and service providers’ awareness of intergenerational care planning in cross-border migration contexts, inform services to alleviate unpreparedness for elderly care and intergenerational discrepancies concerning care arrangements and broaden family services to encompass intergenerational care planning interventions. Acknowledgment: This study is supported by a General Research Grant from the Research Grants Council of the HKSAR, China (Project Number: 15603818).

Keywords: intergenerational care planning, mainland immigrants in Hong Kong, migrant family, older adults

Procedia PDF Downloads 126
15 Clinical Course and Prognosis of Cutaneous Manifestations of COVID-19: A Systematic Review of Reported Cases

Authors: Hilary Modir, Kyle Dutton, Michelle Swab, Shabnam Asghari

Abstract:

Since its emergence, the cutaneous manifestations of COVID-19 have been documented in the literature. However, the majority are case reports with significant limitations in appraisal quality, thus leaving the role of dermatological manifestations of COVID-19 erroneously underexplored. The primary aim of this review was to systematically examine clinical patterns of dermatological manifestations as reported in the literature. This study was designed as a systematic review of case reports. The inclusion criteria consisted of all published reports and articles regarding COVID-19 in English, from September 1st, 2019, until June 22nd, 2020. The population consisted of confirmed cases of COVID-19 with associated cutaneous signs and symptoms. Exclusion criteria included research in planning stages, protocols, book reviews, news articles, review studies, and policy analyses. With the collaboration of a librarian, a search strategy was created consisting of a mixture of keyword terms and controlled vocabulary. Electronic databases searched were MEDLINE via PubMed, EMBASE, CINAHL, Web of Science, LILACS, PsycINFO, WHO Global Literature on Coronavirus Disease, Cochrane Library, Campbell Collaboration, Prospero, WHO International Clinical Trials Registry Platform, Australian and New Zealand Clinical Trials Registry, U.S. Institutes of Health Ongoing Trials Register, AAD Registry, OSF preprints, SSRN, MedRxiV and BioRxiV. The study selection featured an initial pre-screening of titles and abstracts by one independent reviewer. Results were verified by re-examining a random sample of 1% of excluded articles. Eligible studies progressed for full-text review by two calibrated independent reviewers. Covidence was used to store and extract data, such as citation information and findings pertaining to COVID-19 and cutaneous signs and symptoms. Data analysis and summarization methodology reflect the framework proposed by PRISMA and recommendations set out by Cochrane and Joanna Brigg’s Institute for conducting systematic reviews. The Oxford Centre for Evidence-Based Medicine’s level of evidence was used to appraise the quality of individual studies. The literature search revealed a total of 1221 articles. After the abstract and full-text screening, only 95 studies met the eligibility criteria, proceeding to data extraction. Studies were divided into 58% case reports and 42% series. A total of 833 manifestations were reported in 723 confirmed COVID-19 cases. The most frequent lesions were 23% maculopapular, 15% urticarial and 13% pseudo-chilblains, with 46% of lesions reporting pruritus, 16% erythema, 14% pain, 12% burning sensation, and 4% edema. The most common lesion locations were 20% trunk, 19.5% lower limbs, and 17.7% upper limbs. The time to resolution of lesions was between one and twenty-one days. In conclusion, over half of the reported cutaneous presentations in COVID-19 positive patients were maculopapular, urticarial and pseudo-chilblains, with the majority of lesions distributed to the extremities and trunk. As this review’s sample size only contained COVID-19 confirmed cases with skin presentations, it becomes difficult to deduce the direct relationship between skin findings and COVID-19. However, it can be correlated that acute onset of skin lesions, such as chilblains-like, may be associated with or may warrant consideration of COVID-19 as part of the differential diagnosis.

Keywords: COVID-19, cutaneous manifestations, cutaneous signs, general dermatology, medical dermatology, Sars-Cov-2, skin and infectious disease, skin findings, skin manifestations

Procedia PDF Downloads 180
14 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 60
13 Cycleloop Personal Rapid Transit: An Exploratory Study for Last Mile Connectivity in Urban Transport

Authors: Suresh Salla

Abstract:

In this paper, author explores for most sustainable last mile transport mode addressing present problems of traffic congestion, jams, pollution and travel stress. Development of energy-efficient sustainable integrated transport system(s) is/are must to make our cities more livable. Emphasis on autonomous, connected, electric, sharing system for effective utilization of systems (vehicles and public infrastructure) is on the rise. Many surface mobility innovations like PBS, Ride hailing, ride sharing, etc. are, although workable but if we analyze holistically, add to the already congested roads, difficult to ride in hostile weather, causes pollution and poses commuter stress. Sustainability of transportation is evaluated with respect to public adoption, average speed, energy consumption, and pollution. Why public prefer certain mode over others? How commute time plays a role in mode selection or shift? What are the factors play-ing role in energy consumption and pollution? Based on the study, it is clear that public prefer a transport mode which is exhaustive (i.e., less need for interchange – network is widespread) and intensive (i.e., less waiting time - vehicles are available at frequent intervals) and convenient with latest technologies. Average speed is dependent on stops, number of intersections, signals, clear route availability, etc. It is clear from Physics that higher the kerb weight of a vehicle; higher is the operational energy consumption. Higher kerb weight also demands heavier infrastructure. Pollution is dependent on source of energy, efficiency of vehicle, average speed. Mode can be made exhaustive when the unit infrastructure cost is less and can be offered intensively when the vehicle cost is less. Reliable and seamless integrated mobility till last ¼ mile (Five Minute Walk-FMW) is a must to encourage sustainable public transportation. Study shows that average speed and reliability of dedicated modes (like Metro, PRT, BRT, etc.) is high compared to road vehicles. Electric vehicles and more so battery-less or 3rd rail vehicles reduce pollution. One potential mode can be Cycleloop PRT, where commuter rides e-cycle in a dedicated path – elevated, at grade or underground. e-Bike with kerb weight per rider at 15 kg being 1/50th of car or 1/10th of other PRT systems makes it sustainable mode. Cycleloop tube will be light, sleek and scalable and can be modular erected, either on modified street lamp-posts or can be hanged/suspended between the two stations. Embarking and dis-embarking points or offline stations can be at an interval which suits FMW to mass public transit. In terms of convenience, guided e-Bike can be made self-balancing thus encouraging driverless on-demand vehicles. e-Bike equipped with smart electronics and drive controls can intelligently respond to field sensors and autonomously move reacting to Central Controller. Smart switching allows travel from origin to destination without interchange of cycles. DC Powered Batteryless e-cycle with voluntary manual pedaling makes it sustainable and provides health benefits. Tandem e-bike, smart switching and Platoon operations algorithm options provide superior through-put of the Cycleloop. Thus Cycleloop PRT will be exhaustive, intensive, convenient, reliable, speedy, sustainable, safe, pollution-free and healthy alternative mode for last mile connectivity in cities.

Keywords: cycleloop PRT, five-minute walk, lean modular infrastructure, self-balanced intelligent e-cycle

Procedia PDF Downloads 131
12 Sustainable Antimicrobial Biopolymeric Food & Biomedical Film Engineering Using Bioactive AMP-Ag+ Formulations

Authors: Eduardo Lanzagorta Garcia, Chaitra Venkatesh, Romina Pezzoli, Laura Gabriela Rodriguez Barroso, Declan Devine, Margaret E. Brennan Fournet

Abstract:

New antimicrobial interventions are urgently required to combat rising global health and medical infection challenges. Here, an innovative antimicrobial technology, providing price competitive alternatives to antibiotics and readily integratable with currently technological systems is presented. Two cutting edge antimicrobial materials, antimicrobial peptides (AMPs) and uncompromised sustained Ag+ action from triangular silver nanoplates (TSNPs) reservoirs, are merged for versatile effective antimicrobial action where current approaches fail. Antimicrobial peptides (AMPs) exist widely in nature and have recently been demonstrated for broad spectrum of activity against bacteria, viruses, and fungi. TSNP’s are highly discrete, homogenous and readily functionisable Ag+ nanoreseviors that have a proven amenability for operation within in a wide range of bio-based settings. In a design for advanced antimicrobial sustainable plastics, antimicrobial TSNPs are formulated for processing within biodegradable biopolymers. Histone H5 AMP was selected for its reported strong antimicrobial action and functionalized with the TSNP (AMP-TSNP) in a similar fashion to previously reported TSNP biofunctionalisation methods. A synergy between the propensity of biopolymers for degradation and Ag+ release combined with AMP activity provides a novel mechanism for the sustained antimicrobial action of biopolymeric thin films. Nanoplates are transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. Extrusion is used in combination with calendering rolls to create thin polymerc film where the nanoplates are embedded onto the surface. The resultant antibacterial functional films are suitable to be adapted for food packing and biomedical applications. TSNP synthesis were synthesized by adapting a previously reported seed mediated approach. TSNP synthesis was scaled up for litre scale batch production and subsequently concentrated to 43 ppm using thermally controlled H2O removal. Nanoplates were transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. This was acomplised by functionalizing the TSNP with thiol terminated polyethylene glycol and using centrifugal force to transfer them to chloroform. Polycaprolactone (PCL) and Polylactic acid (PLA) were individually processed through extrusion, TSNP and AMP-TSNP solutions were sprayed onto the polymer immediately after exiting the dye. Calendering rolls were used to disperse and incorporate TSNP and TSNP-AMP onto the surface of the extruded films. Observation of the characteristic blue colour confirms the integrity of the TSNP within the films. Antimicrobial tests were performed by incubating Gram + and Gram – strains with treated and non-treated films, to evaluate if bacterial growth was reduced due to the presence of the TSNP. The resulting films successfully incorporated TSNP and AMP-TSNP. Reduced bacterial growth was observed for both Gram + and Gram – strains for both TSNP and AMP-TSNP compared with untreated films indicating antimicrobial action. The largest growth reduction was observed for AMP-TSNP treated films demonstrating the additional antimicrobial activity due to the presence of the AMPs. The potential of this technology to impede bacterial activity in food industry and medical surfaces will forge new confidence in the battle against antibiotic resistant bacteria, serving to greatly inhibit infections and facilitate patient recovery.

Keywords: antimicrobial, biodegradable, peptide, polymer, nanoparticle

Procedia PDF Downloads 115
11 A Systematic Review Of Literature On The Importance Of Cultural Humility In Providing Optimal Palliative Care For All Persons

Authors: Roseanne Sharon Borromeo, Mariana Carvalho, Mariia Karizhenskaia

Abstract:

Healthcare providers need to comprehend cultural diversity for optimal patient-centered care, especially near the end of life. Although a universal method for navigating cultural differences would be ideal, culture’s high complexity makes this strategy impossible. Adding cultural humility, a process of self-reflection to understand personal and systemic biases and humbly acknowledging oneself as a learner when it comes to understanding another's experience leads to a meaningful process in palliative care generating respectful, honest, and trustworthy relationships. This study is a systematic review of the literature on cultural humility in palliative care research and best practices. Race, religion, language, values, and beliefs can affect an individual’s access to palliative care, underscoring the importance of culture in palliative care. Cultural influences affect end-of-life care perceptions, impacting bereavement rituals, decision-making, and attitudes toward death. Cultural factors affecting the delivery of care identified in a scoping review of Canadian literature include cultural competency, cultural sensitivity, and cultural accessibility. As the different parts of the world become exponentially diverse and multicultural, healthcare providers have been encouraged to give culturally competent care at the bedside. Therefore, many organizations have made cultural competence training required to expose professionals to the special needs and vulnerability of diverse populations. Cultural competence is easily standardized, taught, and implemented; however, this theoretically finite form of knowledge can dangerously lead to false assumptions or stereotyping, generating poor communication, loss of bonds and trust, and poor healthcare provider-patient relationship. In contrast, Cultural humility is a dynamic process that includes self-reflection, personal critique, and growth, allowing healthcare providers to respond to these differences with an open mind, curiosity, and awareness that one is never truly a “cultural” expert and requires life-long learning to overcome common biases and ingrained societal influences. Cultural humility concepts include self-awareness and power imbalances. While being culturally competent requires being skilled and knowledgeable in one’s culture, being culturally humble involves the sometimes-uncomfortable position of healthcare providers as students of the patient. Incorporating cultural humility emphasizes the need to approach end-of-life care with openness and responsiveness to various cultural perspectives. Thus, healthcare workers need to embrace lifelong learning in individual beliefs and values on suffering, death, and dying. There have been different approaches to this as well. Some adopt strategies for cultural humility, addressing conflicts and challenges through relational and health system approaches. In practice and research, clinicians and researchers must embrace cultural humility to advance palliative care practices, using qualitative methods to capture culturally nuanced experiences. Cultural diversity significantly impacts patient-centered care, particularly in end-of-life contexts. Cultural factors also shape end-of-life perceptions, impacting rituals, decision-making, and attitudes toward death. Cultural humility encourages openness and acknowledges the limitations of expertise in one’s culture. A consistent self-awareness and a desire to understand patients’ beliefs drive the practice of cultural humility. This dynamic process requires practitioners to learn continuously, fostering empathy and understanding. Cultural humility enhances palliative care, ensuring it resonates genuinely across cultural backgrounds and enriches patient-provider interactions.

Keywords: cultural competency, cultural diversity, cultural humility, palliative care, self-awareness

Procedia PDF Downloads 61
10 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 286
9 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients

Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen

Abstract:

Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.

Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric

Procedia PDF Downloads 91
8 Inhibitory Effects of Crocin from Crocus sativus L. on Cell Proliferation of a Medulloblastoma Human Cell Line

Authors: Kyriaki Hatziagapiou, Eleni Kakouri, Konstantinos Bethanis, Alexandra Nikola, Eleni Koniari, Charalabos Kanakis, Elias Christoforides, George Lambrou, Petros Tarantilis

Abstract:

Medulloblastoma is a highly invasive tumour, as it tends to disseminate throughout the central nervous system early in its course. Despite the high 5-year-survival rate, a significant number of patients demonstrate serious long- or short-term sequelae (e.g., myelosuppression, endocrine dysfunction, cardiotoxicity, neurological deficits and cognitive impairment) and higher mortality rates, unrelated to the initial malignancy itself but rather to the aggressive treatment. A strong rationale exists for the use of Crocus sativus L (saffron) and its bioactive constituents (crocin, crocetin, safranal) as pharmaceutical agents, as they exert significant health-promoting properties. Crocins are water soluble carotenoids. Unlike other carotenoids, crocins are highly water-soluble compounds, with relatively low toxicity as they are not stored in adipose and liver tissues. Crocins have attracted wide attention as promising anti-cancer agents, due to their antioxidant, anti-inflammatory, and immunomodulatory effects, interference with transduction pathways implicated in tumorigenesis, angiogenesis, and metastasis (disruption of mitotic spindle assembly, inhibition of DNA topoisomerases, cell-cycle arrest, apoptosis or cell differentiation) and sensitization of cancer cells to radiotherapy and chemotherapy. The current research aimed to study the potential cytotoxic effect of crocins on TE671 medulloblastoma cell line, which may be useful in the optimization of existing and development of new therapeutic strategies. Crocins were extracted from stigmas of saffron in ultrasonic bath, using petroleum-ether, diethylether and methanol 70%v/v as solvents and the final extract was lyophilized. Identification of crocins according to high-performance liquid chromatography (HPLC) analysis was determined comparing the UV-vis spectra and the retention time (tR) of the peaks with literature data. For the biological assays crocin was diluted to nuclease and protease free water. TE671 cells were incubated with a range of concentrations of crocins (16, 8, 4, 2, 1, 0.5 and 0.25 mg/ml) for 24, 48, 72 and 96 hours. Analysis of cell viability after incubation with crocins was performed with Alamar Blue viability assay. The active ingredient of Alamar Blue, resazurin, is a blue, nontoxic, cell permeable compound virtually nonfluorescent. Upon entering cells, resazurin is reduced to a pink and fluorescent molecule, resorufin. Viable cells continuously convert resazurin to resorufin, generating a quantitative measure of viability. The colour of resorufin was quantified by measuring the absorbance of the solution at 600 nm with a spectrophotometer. HPLC analysis indicated that the most abundant crocins in our extract were trans-crocin-4 and trans-crocin-3. Crocins exerted significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72 and 96 hours versus cells not exposed); as their concentration and time of exposure increased, the reduction of resazurin to resofurin decreased, indicating reduction in cell viability. IC50 values for each time point were calculated ~3.738, 1.725, 0.878 and 0.7566 mg/ml at 24, 48, 72 and 96 hours, respectively. The results of our study could afford the basis of research regarding the use of natural carotenoids as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgements: The research was funded by Fellowships of Excellence for Postgraduate Studies IKY-Siemens Programme.

Keywords: crocetin, crocin, medulloblastoma, saffron

Procedia PDF Downloads 215
7 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device

Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres

Abstract:

The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.

Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device

Procedia PDF Downloads 279
6 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses

Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang

Abstract:

Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.

Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19

Procedia PDF Downloads 180
5 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal

Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal

Abstract:

The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.

Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience

Procedia PDF Downloads 32
4 Knowledge of the Doctors Regarding International Patient Safety Goal

Authors: Fatima Saeed, Abdullah Mudassar

Abstract:

Introduction: Patient safety remains a global priority in the ever-evolving healthcare landscape. At the forefront of this endeavor are the International Patient Safety Goals (IPSGs), a standardized framework designed to mitigate risks and elevate the quality of care. Doctors, positioned as primary caregivers, wield a pivotal role in upholding and adhering to IPSGs, underscoring the critical significance of their knowledge and understanding of these goals. This research embarks on a comprehensive exploration into the depth of Doctors ' comprehension of IPSGs, aiming to unearth potential gaps and provide insights for targeted educational interventions. Established by influential healthcare bodies, including the World Health Organization (WHO), IPSGs represent a universally applicable set of objectives spanning crucial domains such as medication safety, infection control, surgical site safety, and patient identification. Adherence to these goals has exhibited substantial reductions in adverse events, fostering an overall enhancement in the quality of care. This study operates on the fundamental premise that an informed Doctors workforce is indispensable for effectively implementing IPSGs. A nuanced understanding of these goals empowers Doctors to identify potential risks, advocate for necessary changes, and actively contribute to a safety-centric culture within healthcare institutions. Despite the acknowledged importance of IPSGs, there is a growing concern that nurses may need more knowledge to integrate these goals into their practice seamlessly. Methodology: A Comprehensive research methodology covering study design, setting, duration, sample size determination, sampling technique, and data analysis. It introduces the philosophical framework guiding the research and details material, methods, and the analysis framework. The descriptive quantitative cross-sectional study in teaching care hospitals utilized convenient sampling over six months. Data collection involved written informed consent and questionnaires, analyzed with SPSS version 23, presenting results graphically and descriptively. The chapter ensures a clear understanding of the study's design, execution, and analytical processes. Result: The survey results reveal a substantial distribution across hospitals, with 34.52% in MTIKTH and 65.48% in HMC MTI. There is a notable prevalence of patient safety incidents, emphasizing the significance of adherence to IPSGs. Positive trends are observed, including 77.0% affirming the "time-out" procedure, 81.6% acknowledging effective healthcare provider communication, and high recognition (82.7%) of the purpose of IPSGs to improve patient safety. While the survey reflects a good understanding of IPSGs, areas for improvement are identified, suggesting opportunities for targeted interventions. Discussion: The study underscores the need for tailored care approaches and highlights the bio-socio-cultural context of 'contagion,' suggesting areas for further research amid antimicrobial resistance. Shifting the focus to patient safety practices, the survey chapter provides a detailed overview of results, emphasizing workplace distribution, patient safety incidents, and positive reflections on IPSGs. The findings indicate a positive trend in patient safety practices with areas for improvement, emphasizing the ongoing need for reinforcing safety protocols and cultivating a safety-centric culture in healthcare. Conclusion: In summary, the survey indicates a positive trend in patient safety practices with a good understanding of IPSGs among participants. However, identifying areas for potential improvement suggests opportunities for targeted interventions to enhance patient safety further. Ongoing efforts to reinforce adherence to safety protocols, address identified gaps, and foster a safety culture will contribute to continuous improvements in patient care and outcomes.

Keywords: infection control, international patient safety, patient safety practices, proper medication

Procedia PDF Downloads 53
3 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations

Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison

Abstract:

Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.

Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)

Procedia PDF Downloads 5
2 Women in Malaysia: Exploring the Democratic Space in Politics

Authors: Garima Sarkar

Abstract:

The main purpose of the present paper is to investigate the development and progress achieved by women in the decision-making sphere and to access the level of their political-participation in Parliamentary Elections of Malaysia and their status in overall Malaysian political domain. The paper also focuses on the role and status of women in the major political parties of the state both the parties in power as well as the parties in opposition. The primary objective of the study is to focus on the major hindrances and social malpractices faced by women and also Muslim women’s access to justice in Malaysia. It also demonstrates the linkages between national policy initiatives and the advancement of women in various areas, such as economics, health, employment, politics, power-sharing, social development and law and most importantly evaluating their status in the dominant religion of the nation. In Malaysia, women’s political participation is being challenged from every nook and corner of the society. A high percentage of women are getting educated, forming a significant labor force in present day Malaysia, who can be employed in the manufacturing sector, retail trade, hotels and restaurant, agriculture etc. Women today consist of almost half of the population and exceed boys in the tertiary sector by a ratio of 80:20. Despite these achievements, however, women’s labor force engagement remains confined to ‘ traditional women’s occupations’, such as those of primary school teachers, data entry clerks and organizing polls during elections and motivating other less enlightened women to cast their votes. In the political arena, the past few General Elections of Malaysia clearly exhibited a slight change in the number of women Members of Parliament from 10.6% (20 out of 193 Parliamentary seats in 1999) to 10.5% (23 out of 219 Parliamentary seats in 2004). Amidst the political posturing for the recent General Election in 2013 of Malaysia, women’s political participation remains a prime concern in Malaysia. It is evident that while much of the attention of women revolves around charitable assistance, they are much less likely to be portrayed as active participants in electoral politics and governance. According to the electoral roll for the third quarter of 2012, 6,578,916 women are registered as voters. They represent 50.2% of the total number of the registered voters. However, this parity in terms of voter registration is not reflected in the number of elected representatives at the Parliamentary level. Only 10.4% of sitting Members of Parliament are women. The women’s participation in the legislature and executive branches are important since their presence brings the spotlight squarely on issues that have been historically neglected and overlooked. In the recent 2013 General Elections in Malaysia out of 35 full ministerial position only two, or 5.7% have been filled by women. In each of the 2009, 2010, and in the present 2013 Cabinet members, there have only been two women ministers, with this number reduced to one briefly when the Prime Minister appointed himself placeholder in the Ministry of Women, Family and Community Development. In the recent past, in its Election Manifesto, Barisan Nasional made a pledge of ‘increasing the number of women participating in national decision-making processes’. Even after such pledges, the Malaysian leadership has failed to mirror the strong presence of women in leadership positions of public life which primarily includes politics, the judiciary and in business. There has been a strong urge to political parties by various gender-sensitive groups to nominate more women as candidates for contesting elections at the Parliamentary as well as at the State level. The democratization process will never be truly democratic without a proper gender agenda and representation. Although Malaysia signed the Beijing Platform for Action document in 1995, the state has a long way to go in enhancing the participation of women in every segment of Malaysian political, economic and cultural. There has been a small percentage of women representation in decision-making bodies compared to the 30% targeted by the Beijing Platform for Action. Thus, democratization in terms of representation of women in leadership positions and decision-making positions or bodies is essential since it’s a move towards a qualitative transformation of women in shaping national decision-making processes. The democratization process has to ensure women’s full participation and their goals of development and their full participation has to be included in the process of formulating and shaping the developmental goals.

Keywords: women, gender equality, Islam, democratization, political representation, Parliament

Procedia PDF Downloads 261
1 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 78