Search results for: automated facial recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2674

Search results for: automated facial recognition

604 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
603 Three Year Pedometer Based Physical Activity Intervention of the Adult Population in Qatar

Authors: Mercia I. Van Der Walt, Suzan Sayegh, Izzeldin E. L. J. Ibrahim, Mohamed G. Al-Kuwari, Manaf Kamil

Abstract:

Background: Increased physical activity is associated with improvements in health conditions. Walking is recognized as an easy form of physical activity and a strategy used in health promotion. Step into Health (SIH), a national community program, was established in Qatar to support physical activity promotion through the monitoring of step counts. This study aims to assess the physical activity levels of the adult population in Qatar through a pedometer-based community program over a three-year-period. Methodology: This cross-sectional longitudinal study was conducted between from January 2013 and December 2015 based on daily step counts. A total of 15,947 adults (8,551 males and 7,396 females), from different nationalities enrolled in the program and aged 18 to 64, are included. The program involves free distribution of pedometers to members who voluntarily choose to register. It is also supported by a self-monitoring online account and linked to a web-database. All members are informed about the 10,000 steps/day target and automated emails as well as text messages are sent as reminders to upload data. Daily step counts were measured through the Omron HJ-324U pedometer (Omron Healthcare Co., Ltd., Japan). Analyses are done on the data extracted from the web-database. Results: Daily average step count for the overall community increased from 4,830 steps/day (2013) to 6,124 steps /day (2015). This increase was also observed within the three age categories (18–30), (31-45) and (>45) years. Average steps per day were found to be more among males compared with females in each of the aforementioned age groups. Moreover, males and females in the age group (>45 years) show the highest average step count with 7,010 steps/day and 5,564 steps/day respectively. The 21% increase in overall step count throughout the study period is associated with well-resourced program and ongoing impact in smaller communities such as workplaces and universities, a step in the right direction. However, the average step count of 6,124 steps/day in the third year is still classified as the low active category. Although the program showed an increase step count we found, 33% of the study population are low active, 35 % are sedentary with only 32% being active. Conclusion: This study indicates that the pedometer-based intervention was effective in increasing the daily physical activity of participants. However, alternative approaches need to be incorporated within the program to educate and encourage the community to meet the physical activity recommendations in relation to step count.

Keywords: pedometer, physical activity, Qatar, step count

Procedia PDF Downloads 250
602 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 141
601 A Natural Method for Reducing Pain in Female Patients

Authors: Seyed Ali Hossein Zahraei, Iman Dianat

Abstract:

The role of midwives and healthcare providers in applying pain relief methods to female patients is very important. different therapies like hydropathy, flavorer remedies, and respiratory techniques for pain relief do not work properly as what we expected. Lack of recognition of the physiological property of birth, despite findings that coming will attenuate the consequences of hurting, suggests the necessity for bigger awareness among expectant oldsters, educators, and health professionals of the potential of coming as a way of pain relief. Method: In our method we have 5 steps to achieve activation of oxytocin and dopamine pathways in order to reduce pain in all possible fields and reasons instead of using other treatments such as chemical painkillers. Step 1: First of all the patient should start by rubbing the clitoris up and down till occurring first clitoral orgasm. Step 2: Without stop rubing clitoris the patient must continue stimulate the clitoris in different way like circular motion in clock pathway until occurring second clitoral orgasm. Step 3: Immedietly the patient can change the position from clitoris to urethral opening where vestibular glands located. In this step the patient nock the urethral area very slowly without pressure and just like touching the area till feeling want to pee. But because of activation of sympathic nerves the gi tract is inactive. Step 4: In this step the patient should apply more pressure and change the motion to circular on urethral area in which the pee sensation increase but actually it is vestibular gland fluid. The patient should release it in small amount in this step. Step 5: The last step is combination of clitoral and urethral stimulation in up and down motion that cause more pee feeling and after clitoral orgasm occurred the amount of released fluid can be about 400ml.

Keywords: female, natural, method, pain

Procedia PDF Downloads 257
600 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction

Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso

Abstract:

The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.

Keywords: LiDAR, OBIA, remote sensing, local scale

Procedia PDF Downloads 282
599 MB-Slam: A Slam Framework for Construction Monitoring

Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han

Abstract:

Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.

Keywords: perspective alignment, progress monitoring, slam, stereo matching.

Procedia PDF Downloads 224
598 Spray Drying: An Innovative and Sustainable Method of Preserving Fruits

Authors: Adepoju Abiola Lydia, Adeyanju James Abiodun, Abioye A. O.

Abstract:

Spray drying, an innovative and sustainable preservation method, is increasingly gaining recognition for its potential to enhance food security by extending the shelf life of fruits. This technique involves the atomization of fruit pulp into fine droplets, followed by rapid drying with hot air, resulting in a powdered product that retains much of the original fruit's nutritional value, flavor, and color. By encapsulating sensitive bioactive compounds within a dry matrix, spray drying mitigates nutrient degradation and extends product usability. This technology aligns with sustainability goals by reducing post-harvest losses, minimizing the need for preservatives, and lowering energy consumption compared to conventional drying methods. Furthermore, spray drying enables the use of imperfect or surplus fruits, contributing to waste reduction and providing a continuous supply of nutritious fruit-based ingredients regardless of seasonal variations. The powdered form enhances versatility, allowing incorporation into various food products, thus broadening the scope of fruit utilization. Innovations in spray drying, such as the use of novel carrier agents and optimization of processing parameters, enhance the quality and functionality of the final product. Moreover, the scalability of spray drying makes it suitable for both industrial applications and smaller-scale operations, supporting local economies and food systems. In conclusion, spray drying stands out as a key technology in enhancing food security by ensuring a stable supply of high-quality, nutritious food ingredients while fostering sustainable agricultural practices.

Keywords: spray drying, sustainable, process parameters, carrier agents, fruits

Procedia PDF Downloads 22
597 Traditional Role of Women and Its Implication in Solid Waste Management in Bauchi Metropolis

Authors: Bogoro Audu Gani, Tobi Nzelibe Ajiji Haruna

Abstract:

Women have both knowledge and expertise, whose recognition can lead to more efficient, effective, sustainable, and fair waste management operations. Studies have shown that the failure to take cognizance of the traditional role of women in the management of urban environments results in a serious loss of efficiency and productivity. However, urban managers in developing countries are yet to identify and integrate those critical roles of women into urban environmental management. This research is motivated not only due the poor solid waste management but also by the total neglect of the role of women in solid waste management in the Bauchi metropolis. Systematic random sampling technique was adopted for the selection of the samples and 4% of the study population was taken as the sample size. The major instruments used for data collection were questionnaires, interviews and direct measurement of household solid waste at source and the data is presented in tables and charts. It is found that over 95% of sweeping, cooking and food preparation are exclusively reserved for women in the study area. Women dominate the generation, storage and collection of household solid waste with 81%, 96% and 91%, respectively, within the study area. It is also discovered that segregation can be 95% effectively carried out by women that have free time. However, urban managers in the Bauchi metropolis are yet to identify the role of women with a view to integrating them into solid waste management in order to achieve a healthy and clean living environment in the Bauchi metropolis. Among other suggestions, the paper recommends that the role of women should be identified and integrated into developing policies and programs for a clean and healthy living urban environment; this will not only improve the environmental quality but would also increase the income base of the family.

Keywords: women, solid waste, integration, segregation

Procedia PDF Downloads 88
596 Valorization Cascade Approach of Fish By-Products towards a Zero-Waste Future: A Review

Authors: Joana Carvalho, Margarida Soares, André Ribeiro, Lucas Nascimento, Nádia Valério, Zlatina Genisheva

Abstract:

Following the exponential growth of human population, a remarkable increase in the amount of fish waste has been produced worldwide. The fish processing industry generates a considerable amount of by-products which represents a considerable environmental problem. Accordingly, the reuse and valorisation of these by-products is a key process for marine resource preservation. The significant volume of fish waste produced worldwide, along with its environmental impact, underscores the urgent need for the adoption of sustainable practices. The transformative potential of utilizing fish processing waste to create industrial value is gaining recognition. The substantial amounts of waste generated by the fish processing industry present both environmental challenges and economic inefficiencies. Different added-value products can be recovered by the valorisation industries, whereas fishing companies can save costs associated with the management of those wastes, with associated advantages, not only in terms of economic income but also considering the environmental impacts. Fish processing by-products have numerous applications; the target portfolio of products will be fish oil, fish protein hydrolysates, bacteriocins, pigments, vitamins, collagen, and calcium-rich powder, targeting food products, additives, supplements, and nutraceuticals. This literature review focuses on the main valorisation ways of fish wastes and different compounds with a high commercial value obtained by fish by-products and their possible applications in different fields. Highlighting its potential in sustainable resource management strategies can play and important role in reshaping the fish processing industry, driving it towards circular economy and consequently more sustainable future.

Keywords: fish process industry, fish wastes, by-products, circular economy, sustainability

Procedia PDF Downloads 17
595 Examining Diversity, Equity, and Inclusion in New Media Strategies within Contemporary Marketing Communication

Authors: Namirimu Beatrice Doreen

Abstract:

In recent years, there has been growing recognition of the importance of diversity, equity, and inclusion (DEI) in advertising, driven in part by the increasing diversity of society and the expanding reach of new media platforms. As marketers grapple with the challenge of creating campaigns that resonate with a wide range of audiences, the role of new media adoption emerges as a critical, independent variable shaping the landscape of DEI in advertising. This paper delves into the evolving dynamics of DEI in advertising, examining the multifaceted challenges and opportunities encountered by brands in their pursuit of more inclusive marketing strategies. Drawing on theoretical frameworks from marketing, sociology, and communication studies, this paper explores the intricate interplay between DEI initiatives and their impact on consumer perceptions, brand reputation, and market performance. The analysis considers how new media adoption influences the effectiveness and reach of DEI initiatives as brands leverage digital platforms to engage with diverse audiences in innovative ways. Through insightful case studies, this paper illustrates best practices and identifies areas for improvement in the realm of inclusive advertising, shedding light on the practical implications of DEI principles for marketers. By synthesizing insights from academia and industry, this paper offers actionable recommendations for marketers seeking to navigate the complexities of DEI in their advertising strategies. By embracing DEI principles and harnessing the power of new media platforms, brands can foster a more equitable and inclusive advertising landscape, ultimately enhancing their connections with diverse audiences and driving positive social change.

Keywords: diversity, equity, inclusion, new media, contemporary marketing communication

Procedia PDF Downloads 65
594 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
593 An Interpretative Phenomenological Analysis on the Concept of Friends of Children in Conflict with the Law

Authors: Karla Kristine Bay, Jovie Ann Gabin, Allana Joyce Sasotona

Abstract:

This research employed an Interpretative Phenomenological Analysis to explore the experiences of Children in Conflict with the Law (CICL) which gave light to their concept of ‘friends’. Derived from this context are the following objectives of the study: 1) determining the differentiation of the forms of friends of the CICL; 2) presenting the process of attachment towards detachment in the formation of friendship; and 3) discussing the experiences, and reflections of the CICL on the ‘self’ out of their encounter with friendship. Using the data gathered from the individual drawings of the CICL of their representations of the self, family, friends, community, and Bahay Kalinga as subjects in the meaning-making process utilizing Filipino Psychology methods of pagtatanong-tanong (interview), and pakikipagkwentuhan (conversation), data analysis produced a synthesis of seventeen individual cases. Overall results generated three superordinate themes on the differentiation of the forms of friends which include friends with good influences, friends with bad influences, and friends within the family. While two superordinate themes were produced on the process of attachment towards detachment, namely social, emotional, and psychological experiences on the process of attachment, and emotional and psychological experiences on the process of detachment. Lastly, two superordinate themes were created on the experiences, and reflections of the CICL on the ‘self’ out of their encounter with friendship. This consists of the recognition of the ‘self’ as a responsible agent in developing healthy relationships between the self and others, and reconstruction of the self from the collective experiences of healing, forgiveness, and acceptance. These findings, together with supporting theories discussed the impact of friendship on the emergence of criminal behavior and other dispositions; springing from the child’s dissociation from the family that led to finding belongingness from an external group called friends.

Keywords: children in conflict with the law, criminal behavior, friends, interpretative phenomenological analysis

Procedia PDF Downloads 235
592 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry

Authors: Samuel Ntsanwisi

Abstract:

This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.

Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning

Procedia PDF Downloads 61
591 Delisting Wave: Corporate Financial Distress, Institutional Investors Perception and Performance of South African Listed Firms

Authors: Adebiyi Sunday Adeyanju, Kola Benson Ajeigbe, Fortune Ganda

Abstract:

In the past three decades, there has been a notable increase in the number of firms delisting from the Johannesburg Stock Exchange (JSE) in South Africa. The recent increasing rate of delisting waves of corporate listed firms motivated this study. This study aims to explore the influence of institutional investor perceptions on the financial distress experienced by delisted firms within the South African market. The study further examined the impact of financial distress on the corporate performance of delisted firms. Using the data of delisted firms spanning from 2000 to 2023 and the FGLS (Feasible Generalized Least Squares) for the short run and PCSE (Panel-Corrected Standard Errors) for the long run effects of the relationship. The finding indicated that a decline in institutional investors’ perceptions was associated with the corporate financial distress of the delisted firms, particularly during the delisting year and the few years preceding the announcement of the delisting. This study addressed the importance of investor recognition in corporate financial distress and the delisting wave among listed firms- a finding supporting the stakeholder theory. This study is an insight for companies’ managements, investors, governments, policymakers, stockbrokers, lending institutions, bankers, the stock market, and other stakeholders in their various decision-making endeavours. Based on the above findings, it was recommended that corporate managements should improve their governance strategies that can help companies’ financial performances. Accountability and transparency through governance must also be improved upon with government support through the introduction of policies and strategies and enabling an easy environment that can help companies perform better.

Keywords: delisting wave, institutional investors, financial distress, corporate performance, investors’ perceptions

Procedia PDF Downloads 45
590 Violence and Challenges in the Pamir Hindu Kush: A Study of the Impact of Change on a Central but Unknown Region

Authors: Skander Ben Mami

Abstract:

Despite its particular patterns and historical importance, the remote region of the Pamir Hindu Kush still lacks public recognition, as well as scientific substance, because of the abundance of classical state-centred geopolitical studies, the resilience of (inter)national narratives, and the political utility of the concepts of 'Central Asia' and 'South Asia'. However, this specific region of about 100 million inhabitants and located at the criss-cross of four geopolitical areas (Indian, Iranian, Chinese and Russian) over a territory of half a million square kilometres features a string of patterns that set it apart from the neighbouring areas of the Fergana, the Gansu and Punjab. Moreover, the Pamir Hindu Kush undergoes a series of parallel social and economic transformations that deserve scrutiny for their strong effect on the people’s lifestyle, particularly in three major urban centres (Aksu in China, Bukhara in Uzbekistan and Islamabad in Pakistan) and their immediate rural surroundings. While the involvement of various public and private stakeholders (States, NGOs, civil movements, private firms…) has undeniably resulted in positive elements (economic growth, connectivity, higher school attendance), it has in the same time generated a collection of negative effects (radicalizing, inequalities, pollution, territorial divide) that need to be addressed to strengthen regional and international security. This paper underscores the region’s strategical importance as the major hotbed and engine of insecurity and violence in Asia, notably in the context of Afghanistan’s enduring violence. It introduces the inner structures of the region, the different sources of violence as well as the governments’ responses to address it.

Keywords: geography, security, terrorism, urbanisation

Procedia PDF Downloads 138
589 Sub-Chronic Exposure to Dexamethasone Impairs Cognitive Function and Insulin in Prefrontal Cortex of Male Wistar Rats

Authors: A. Alli-Oluwafuyi, A. Amin, S. M. Fii, S. O. Amusa, A. Imam, N. T. Asogwa, W. I. Abdulmajeed, F. Olaseinde, B. V. Owoyele

Abstract:

Chronic stress or prolonged glucocorticoid administration impairs higher cognitive functions in rodents and humans. However, the mechanisms are not fully clear. Insulin and receptors are expressed in the brain and are involved in cognition. Insulin resistance accompanies Alzheimer’s disease and associated cognitive decline. The goal of this study was to evaluate the effects of sub-chronic administration of a glucocorticoid, dexamethasone (DEX) on behavior and biochemical changes in prefrontal cortex (PFC). Male Wistar rats were administered DEX (2, 4 & 8 mg/kg, IP) or saline for seven consecutive days and behavior was assessed in the following paradigms: “Y” maze, elevated plus maze, Morris’ water maze and novel object recognition (NOR) tests. Insulin, lactate dehydrogenase (LDH) and Superoxide Dismutase (SOD) activity were evaluated in homogenates of the prefrontal cortex. DEX-treated rats exhibited impaired prefrontal cortex function manifesting as reduced locomotion, impaired novel object exploration and impaired short- and long-term spatial memory compared to normal controls (p < 0.05). These effects were not consistently dose-dependent. These behavioral alterations were accompanied by a decrease in insulin concentration observed in PFC of 4 mg/kg DEX-treated rats compared to control (10μIU/mg vs. 50μIU/mg; p < 0.05) but not 2mg/kg. Furthermore, we report a modification of brain stress markers LDH and SOD (p > 0.05). These results indicate that prolonged activation of GCs disrupt prefrontal cortex function which may be related to insulin impairment. These effects may not be attributable to a non-specific elevation of oxidative stress in the brain. Future studies would evaluate mechanisms of GR-induced insulin loss.

Keywords: dexamethasone, insulin, memory, prefrontal cortex

Procedia PDF Downloads 284
588 Determination of Identification and Antibiotic Resistance Rates of Serratia marcescens and Providencia Spp. from Various Clinical Specimens by Using Both the Conventional and Automated (VITEK2) Methods

Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz

Abstract:

Objective: Serratia species are identified as aerobic, motile Gram negative rods. The species Serratia marcescens (S. marcescens) causes both opportunistic and nosocomial infections. The genus Providencia is Gram-negative bacilli and includes urease-producing that is responsible for a wide range of human infections. Although most Providencia infections involve the urinary tract, they are also associated with gastroenteritis, wound infections, and bacteremia. The aim of this study was evaluate the antimicrobial resistance rates of S. marcescens and Providencia spp. strains which had been isolated from various clinical materials obtained from different patients who belongs to intensive care units (ICU) and inpatient clinics. Methods: A total of 35 S. marcescens and Providencia spp. strains isolated from various clinical samples admitted to Medical Microbiology Laboratory, ANS Research and Practice Hospital, Afyon Kocatepe University between October 2013 and September 2015 were included in the study. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bio-Merieux, Marcy l’etoile, France) was used additionally. Antibacterial resistance tests were performed by using Kirby Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: The distribution of clinical samples were as follows: upper and lower respiratory tract samples 26, 74.2 % wound specimen 6, 17.1 % blood cultures 3, 8.5%. Of the 35 S. marcescens and Providencia spp. strains; 28, 80% were isolated from clinical samples sent from ICU. The resistance rates of S. marcescens strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 8.5 %, 22.8 %, 11.4 %, 2.8 %, 17.1 %, 40 %, 28.5 % and 5.7 % respectively. Resistance rates of Providencia spp. strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 10.2 %, 33,3 %, 18.7 %, 8.7 %, 13.2 %, 38.6 %, 26.7%, and 11.8 % respectively. Conclusion: S. marcescens is usually resistant to ampicillin, amoxicillin, amoxicillin/clavulanate, ampicillin/sulbactam, cefuroxime, cephamycins, nitrofurantoin, and colistin. The most effective antibiotic on the total of S. marcescens strains was found to be gentamicin 2.8 %, of the totally tested strains the highest resistance rate found against to ceftazidime 40 %. The lowest and highest resistance rates were found against gentamiycin and ceftazidime with the rates of 8.7 % and 38.6 % for Providencia spp.

Keywords: Serratia marcescens, Providencia spp., antibiotic resistance, intensive care unit

Procedia PDF Downloads 244
587 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study

Authors: Tiffany Yung Hsuan Ma

Abstract:

The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.

Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education

Procedia PDF Downloads 69
586 Raising Forest Voices: A Cross-Country Comparative Study of Indigenous Peoples’ Engagement with Grassroots Climate Change Mitigation Projects in the Initial Pilot Phase of Community-Based Reducing Emissions from Deforestation and forest Degradation

Authors: Karl D. Humm

Abstract:

The United Nations’ Community-based REDD+ (Reducing Emissions from Deforestation and forest Degradation) (CBR+) is a programme that directly finances grassroots climate change mitigation strategies that uplift Indigenous Peoples (IPs) and other marginalised groups. A pilot for it in six countries was developed in response to criticism of the REDD+ programme for excluding IPs from dialogues about climate change mitigation strategies affecting their lands and livelihoods. Despite the pilot’s conclusion in 2017, no complete report has yet been produced on the results of CBR+. To fill this gap, this study investigated the experiences with involving IPs in the CBR+ programmes and local projects across all six pilot countries. A literature review of official UN reports and academic articles identified challenges and successes with IP participation in REDD+ which became the basis for a framework guiding data collection. A mixed methods approach was used to collect and analyse qualitative and quantitative data from CBR+ documents and written interviews with CBR+ National Coordinators in each country for a cross-country comparative analysis. The study found that the most frequent challenges were lack of organisational capacity, illegal forest activities, and historically-based contentious relationships in IP and forest-dependent communities. Successful programmes included IPs and incorporated respect and recognition of IPs as major stakeholders in managing sustainable forests. Findings are summarized and shared with a set of recommendations for improvement of future projects.

Keywords: climate change, forests, indigenous peoples, REDD+

Procedia PDF Downloads 124
585 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 132
584 Key Principles and Importance of Applied Geomorphological Maps for Engineering Structure Placement

Authors: Sahar Maleki, Reza Shahbazi, Nayere Sadat Bayat Ghiasi

Abstract:

Applied geomorphological maps are crucial tools in engineering, particularly for the placement of structures. These maps provide precise information about the terrain, including landforms, soil types, and geological features, which are essential for making informed decisions about construction sites. The importance of these maps is evident in risk assessment, as they help identify potential hazards such as landslides, erosion, and flooding, enabling better risk management. Additionally, these maps assist in selecting the most suitable locations for engineering projects. Cost efficiency is another significant benefit, as proper site selection and risk assessment can lead to substantial cost savings by avoiding unsuitable areas and minimizing the need for extensive ground modifications. Ensuring the maps are accurate and up-to-date is crucial for reliable decision-making. Detailed information about various geomorphological features is necessary to provide a comprehensive overview. Integrating geomorphological data with other environmental and engineering data to create a holistic view of the site is one of the most fundamental steps in engineering. In summary, the preparation of applied geomorphological maps is a vital step in the planning and execution of engineering projects, ensuring safety, efficiency, and sustainability. In the Geological Survey of Iran, the preparation of these applied maps has enabled the identification and recognition of areas prone to geological hazards such as landslides, subsidence, earthquakes, and more. Additionally, areas with problematic soils, potential groundwater zones, and safe construction sites are identified and made available to the public.

Keywords: geomorphological maps, geohazards, risk assessment, decision-making

Procedia PDF Downloads 23
583 Ecological impacts of Cage Farming: A Case Study of Lake Victoria, Kenya

Authors: Mercy Chepkirui, Reuben Omondi, Paul Orina, Albert Getabu, Lewis Sitoki, Jonathan Munguti

Abstract:

Globally, the decline in capture fisheries as a result of the growing population and increasing awareness of the nutritional benefits of white meat has led to the development of aquaculture. This is anticipated to meet the increasing call for more food for the human population, which is likely to increase further by 2050. Statistics showed that more than 50% of the global future fish diet will come from aquaculture. Aquaculture began commercializing some decades ago; this is accredited to technological advancement from traditional to modern cultural systems, including cage farming. Cage farming technology has been rapidly growing since its inception in Lake Victoria, Kenya. Currently, over 6,000 cages have been set up in Kenyan waters, and this offers an excellent opportunity for recognition of Kenya’s government tactic to eliminate food insecurity and malnutrition, create employment and promote a Blue Economy. However, being an open farming enterprise is likely to emit large bulk of waste hence altering the ecosystem integrity of the lake. This is through increased chlorophyll-a pigments, alteration of the plankton community, macroinvertebrates, fish genetic pollution, transmission of fish diseases and pathogens. Cage farming further increases the nutrient loads leading to the production of harmful algal blooms, thus negatively affecting aquatic and human life. Despite the ecological transformation, cage farming provides a platform for the achievement of the Sustainable Development Goals of 2030, especially the achievement of food security and nutrition. Therefore, there is a need for Integrated Multitrophic Aquaculture as part of Blue Transformation for ecosystem monitoring.

Keywords: aquaculture, ecosystem, blue economy, food security

Procedia PDF Downloads 78
582 Service Provision in 'the Jungle': Describing Mental Health and Psychosocial Support Offered to Residents of the Calais Camp

Authors: Amy Darwin, Claire Blacklock

Abstract:

Background: Existing literature about delivering evidence-based mental health and psychosocial support (MHPSS) in emergency settings is limited. It is difficult to monitor and evaluate the approach to MHPSS in informal refugee camps such as ‘The Jungle’ in Calais, where there are multiple service providers and where the majority of providers are volunteers. AIM: To identify experiences of MHPSS delivery by service providers in an informal camp environment in Calais, France and describe MHPSS barriers and opportunities in this type of setting. Method: Qualitative semi-structured interviews were conducted with 13 individuals from different organisations offering MHPSS in Calais and analysed using conventional content analysis. Results: Unsafe, uncertain and unsanitary conditions in the camp meant MHPSS was difficult to implement, and such conditions contributed to the poor mental health of the residents. The majority of MHPSS was offered by volunteers who lacked resources and training, and there was no overall official camp leadership which meant care was poorly coordinated and monitored. Strong relationships existed between volunteers and camp residents, but volunteers felt frustrated that they could not deliver the kind of MHPSS that they felt residents required. Conclusion: While long-term volunteers had built supportive relationships with camp residents, lack of central coordination and leadership of MHPSS services and limited access to trained professionals made implementation of MHPSS problematic. Similarly, the camp lacked the necessary infrastructure to meet residents’ basic needs. Formal recognition of the camp, and clear central leadership were identified as necessary steps to improving MHPSS delivery.

Keywords: calais, mental health, refugees, the jungle, MHPSS

Procedia PDF Downloads 249
581 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 83
580 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 267
579 Biophysical Characterization of the Inhibition of cGAS-DNA Sensing by KicGAS, Kaposi's Sarcoma-Associated Herpesvirus Inhibitor of cGAS

Authors: D. Bhowmik, Y. Tian, Q. Yin, F. Zhu

Abstract:

Cyclic GMP-AMP synthase (cGAS), recognises cytoplasmic double-stranded DNA (dsDNA), indicative of bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. Viruses also have developed numerous strategies to antagonize the cGAS-STING pathway. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that is the causative agent of Kaposi’s sarcoma and several other malignancies. To persist in the host, consequently causing diseases, KSHV must overcome the host innate immune responses, including the cGAS-STING DNA sensing pathway. We already found that ORF52 or KicGAS (KSHV inhibitor of cGAS), an abundant and basic gamma herpesvirus-conserved tegument protein, directly inhibits cGAS enzymatic activity. To better understand the mechanism, we have performed the biochemical and structural characterization of full-length KicGAS and various mutants in regarding binding to DNA. We observed that KicGAS is capable of self-association and identified the critical residues involved in the oligomerization process. We also characterized the DNA-binding of KicGAS and found that KicGAS cooperatively oligomerizes along the length of the double stranded DNA, the highly conserved basic residues at the c-terminal disordered region are crucial for DNA recognition. Deficiency in oligomerization also affects DNA binding. Thus DNA binding by KicGAS sequesters DNA and prevents it from being detected by cGAS, consequently inhibiting cGAS activation. KicGAS homologues also inhibit cGAS efficiently, suggesting inhibition of cGAS is evolutionarily conserved mechanism among gamma herpesvirus. These results highlight the important viral strategy to evade this innate immune sensor.

Keywords: Kaposi's sarcoma-associated herpesvirus, KSHV, cGAS, DNA binding, inhibition

Procedia PDF Downloads 128
578 Prevalence of Breast Cancer Molecular Subtypes at a Tertiary Cancer Institute

Authors: Nahush Modak, Meena Pangarkar, Anand Pathak, Ankita Tamhane

Abstract:

Background: Breast cancer is the prominent cause of cancer and mortality among women. This study was done to show the statistical analysis of a cohort of over 250 patients detected with breast cancer diagnosed by oncologists using Immunohistochemistry (IHC). IHC was performed by using ER; PR; HER2; Ki-67 antibodies. Materials and methods: Formalin fixed Paraffin embedded tissue samples were obtained by surgical manner and standard protocol was followed for fixation, grossing, tissue processing, embedding, cutting and IHC. The Ventana Benchmark XT machine was used for automated IHC of the samples. Antibodies used were supplied by F. Hoffmann-La Roche Ltd. Statistical analysis was performed by using SPSS for windows. Statistical tests performed were chi-squared test and Correlation tests with p<.01. The raw data was collected and provided by National Cancer Insitute, Jamtha, India. Result: Luminal B was the most prevailing molecular subtype of Breast cancer at our institute. Chi squared test of homogeneity was performed to find equality in distribution and Luminal B was the most prevalent molecular subtype. The worse prognostic indicator for breast cancer depends upon expression of Ki-67 and her2 protein in cancerous cells. Our study was done at p <.01 and significant dependence was observed. There exists no dependence of age on molecular subtype of breast cancer. Similarly, age is an independent variable while considering Ki-67 expression. Chi square test performed on Human epidermal growth factor receptor 2 (HER2) statuses of patients and strong dependence was observed in percentage of Ki-67 expression and Her2 (+/-) character which shows that, value of Ki depends upon Her2 expression in cancerous cells (p<.01). Surprisingly, dependence was observed in case of Ki-67 and Pr, at p <.01. This shows that Progesterone receptor proteins (PR) are over-expressed when there is an elevation in expression of Ki-67 protein. Conclusion: We conclude from that Luminal B is the most prevalent molecular subtype at National Cancer Institute, Jamtha, India. There was found no significant correlation between age and Ki-67 expression in any molecular subtype. And no dependence or correlation exists between patients’ age and molecular subtype. We also found that, when the diagnosis is Luminal A, out of the cohort of 257 patients, no patient shows >14% Ki-67 value. Statistically, extremely significant values were observed for dependence of PR+Her2- and PR-Her2+ scores on Ki-67 expression. (p<.01). Her2 is an important prognostic factor in breast cancer. Chi squared test for Her2 and Ki-67 shows that the expression of Ki depends upon Her2 statuses. Moreover, Ki-67 cannot be used as a standalone prognostic factor for determining breast cancer.

Keywords: breast cancer molecular subtypes , correlation, immunohistochemistry, Ki-67 and HR, statistical analysis

Procedia PDF Downloads 123
577 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 153
576 Use of Smartwatches for the Emotional Self-Regulation of Individuals with Autism Spectrum Disorder (ASD)

Authors: Juan C. Torrado, Javier Gomez, Guadalupe Montero, German Montoro, M. Dolores Villalba

Abstract:

One of the most challenging aspects of the executive dysfunction of people with Autism Spectrum Disorders is the behavior control. This is related to a deficit in their ability to regulate, recognize and manage their own emotions. Some researchers have developed applications for tablets and smartphones to practice strategies of relaxation and emotion recognition. However, they cannot be applied to the very moment of temper outbursts, anger episodes or anxiety, since they require to carry the device, start the application and be helped by caretakers. Also, some of these systems are developed for either obsolete technologies (old versions of tablet devices, PDAs, outdated operative systems of smartphones) or specific devices (self-developed or proprietary ones) that create differentiation between the users and the rest of the individuals in their context. For this project we selected smartwatches. Focusing on emergent technologies ensures a wide lifespan of the developed products, because the derived products are intended to be available in the same moment the very technology gets popularized, not later. We also focused our research in commercial versions of smartwatches, since this way differentiation is easily avoided, so the users’ abandonment rate lowers. We have developed a smartwatch system along with a smartphone authoring tool to display self-regulation strategies. These micro-prompting strategies are conformed of pictograms, animations and temporizers, and they are designed by means of the authoring tool: When both devices synchronize their data, the smartwatch holds the self-regulation strategies, which are triggered when the smartwatch sensors detect a remarkable rise of heart rate and movement. The system is being currently tested in an educational center of people with ASD of Madrid, Spain.

Keywords: assistive technologies, emotion regulation, human-computer interaction, smartwatches

Procedia PDF Downloads 296
575 Social Media Impact on Professional and Profile Level of Dental Students in Saudi Arabia

Authors: Aliyaa Zaidan, Rayan Bahabri

Abstract:

The twenty-first century revealed an accelerating change and intensifying complexity of communication technology. Online social networking engines have gained astounding recognition worldwide. The influence of those social media platforms on dentistry and dental students is not well established. Therefore, this study aimed to evaluate the impact of using social media on professional and profile level among dental students in Saudi Arabia. A cross-sectional study developed via online questionnaire concerning on social media usage and its effect on professional and profile level of dental students and dental interns from several universities in Saudi Arabia. A total of 296 dental students and dental interns in Saudi Arabia responded to the questionnaire. Ninety-eight percent of the participants usually use the social media on a regular basis. Most social media sites used among the participants were Snapchat, Instagram, and YouTube by 85%, 81%, 77% respectively. Forty-one percent of the participants agreed that using social media in the dental field is a necessity nowadays. Thirty-eight percent of participants agreed that using social media is an easy way to gain a reliable knowledge, while 43% agreed that social media will improve the quality of healthcare. Furthermore, 65% of the students deemed using social media for academic purposes will improve their performance. Fifty-five percent of the respondents often use social media tools to obtain information about subject or procedures related to the dental field. Regarding profile reputation of dental students, 40% of the respondents agreed that their profile information published on social networking websites, could be used by others to judge their level of professionalism. Male and female dental students both agreed that their reputation would be adversely affected by 37%,63%, respectively, if their social networking activity were viewed by members of the public. The discrepancy among student levels reveals that social media profile positively influence the acceptance to postgraduate programs (P= 0.01).

Keywords: dental students, professional, reputation, social media

Procedia PDF Downloads 211