Search results for: membrane separation
2035 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide
Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh
Abstract:
Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration
Procedia PDF Downloads 1432034 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)
Authors: Ahmad Kayvani Fard, Yehia Manawi
Abstract:
Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation
Procedia PDF Downloads 2272033 Hansen Solubility Parameter from Surface Measurements
Authors: Neveen AlQasas, Daniel Johnson
Abstract:
Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied filmsKeywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements
Procedia PDF Downloads 942032 CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics
Authors: Hui Zhu, Yuan Wang, Shibo Kuang, Aibing Yu
Abstract:
The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types.Keywords: CFD-DEM, inertial effect, microchannel, separation
Procedia PDF Downloads 2922031 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption
Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez
Abstract:
In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap
Procedia PDF Downloads 3912030 Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis
Authors: Ligang Wang, Theodoros Damartzis, Stefan Diethelm, Jan Van Herle, François Marechal
Abstract:
Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET.Keywords: biogas upgrading, solid-oxide electrolyzer, co-electrolysis, CO₂ utilization, energy storage
Procedia PDF Downloads 1552029 Source Separation for Global Multispectral Satellite Images Indexing
Authors: Aymen Bouzid, Jihen Ben Smida
Abstract:
In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images
Procedia PDF Downloads 4032028 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups
Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto
Abstract:
The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group
Procedia PDF Downloads 3782027 Prediction of Turbulent Separated Flow in a Wind Tunel
Authors: Karima Boukhadia
Abstract:
In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone
Procedia PDF Downloads 5762026 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function
Authors: Wei Tian, Jie Liang, Hammad Naveed
Abstract:
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space
Procedia PDF Downloads 6182025 Baby Bed Sheets with a Nanofiber Membrane
Authors: Roman Knizek, Denisa Knizkova, Vladimir Bajzik
Abstract:
Nowadays there are countless kinds of bedsheets or mattress covers for little children which should stop any liquid getting into the mattress. It is quite easy to wash the cover of the mattress, but it is almost impossible to clean the body of a mattress which is made of latex foam, wool or synthetic materials. Children bedsheets or mattress covers are often made with plastic coating which is not steam or air permeable and therefore is not very hygienic. This is our goal: by laminating a nanofiber membrane to a suitable bedsheet textile material, we can create a bedsheet which is waterproof but at the same time steam permeable and also partially breathable, thanks to the membrane. For the same reason, nanofiber membranes are widely used in outdoor clothing. The comfort properties and durability of the new nano-membrane bedsheet were studied. The following comfort properties were investigated: steam permeability - measured in accordance with Standard ISO 11902 hydrostatic resistances - measured in accordance with Standard ISO 811 and air permeability - measured in accordance with Standard ISO 9237. The durability or more precisely the wash resistance of the nano-membrane bedsheet was also measured by submitting the sheet to 30 washing cycles. The result of our work is a children's bedsheet with a nano-membrane. The nano-membrane is made of polyurethane to keep maximum flexibility and elasticity which are essential for this product. The comfort properties of this new bedsheet are very good especially its steam permeability and hydrostatic resistance.Keywords: bed sheet, hydrostatic resistance, nanofiber membrane, water vapour permeable
Procedia PDF Downloads 2142024 Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness
Authors: Glebert C. Dadol, Pamela Mae L. Ucab, Camila Flor Y. Lobarbio, Noel Peter B. Tan
Abstract:
Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance.Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation
Procedia PDF Downloads 1182023 Cadmium Separation from Aqueous Solutions by Natural Biosorbents
Authors: Z. V. P. Murthy, Preeti Arunachalam, Sangeeta Balram
Abstract:
Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging.Keywords: chitin, chitosan, cadmium, isotherm, kinetics
Procedia PDF Downloads 4112022 Removal of Na₂SO₄ by Electro-Confinement on Nanoporous Carbon Membrane
Authors: Jing Ma, Guotong Qin
Abstract:
We reported electro-confinement desalination (ECMD), a desalination method combining electric field effects and confinement effects using nanoporous carbon membranes as electrode. A carbon membrane with average pore size of 8.3 nm was prepared by organic sol-gel method. The precursor of support was prepared by curing porous phenol resin tube. Resorcinol-formaldehyde sol was coated on porous tubular resin support. The membrane was obtained by carbonisation of coated support. A well-combined top layer with the thickness of 35 μm was supported by macroporous support. Measurements of molecular weight cut-off using polyethylene glycol showed the average pore size of 8.3 nm. High salt rejection can be achieved because the water molecules need not overcome high energy barriers in confined space, while huge inherent dehydration energy was required for hydrated ions to enter the nanochannels. Additionally, carbon membrane with additional electric field can be used as an integrated membrane electrode combining the effects of confinement and electric potential gradient. Such membrane electrode can repel co-ions and attract counter-ions using pressure as the driving force for mass transport. When the carbon membrane was set as cathode, the rejection of SO₄²⁻ was 94.89%, while the removal of Na⁺ was less than 20%. We set carbon membrane as anode chamber to treat the effluent water from the cathode chamber. The rejection of SO₄²⁻ and Na⁺ reached to 100% and 88.86%, respectively. ECMD will be a promising energy efficient method for salt rejection.Keywords: nanoporous carbon membrane, confined effect, electric field, desalination, membrane reactor
Procedia PDF Downloads 1252021 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics
Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah
Abstract:
Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 2992020 Noise Reduction by Energising the Boundary Layer
Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha
Abstract:
Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.Keywords: airframe, boundary layer, noise, reduction
Procedia PDF Downloads 4812019 Vitamin B9 Separation by Synergic Pertraction
Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan
Abstract:
Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid
Procedia PDF Downloads 2752018 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 2502017 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells
Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou
Abstract:
Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells
Procedia PDF Downloads 5892016 Identification of Membrane Foulants in Direct Contact Membrane Distillation for the Treatment of Reject Brine
Authors: Shefaa Mansour, Hassan Arafat, Shadi Hasan
Abstract:
Management of reverse osmosis (RO) brine has become a major area of research due to the environmental concerns associated with it. This study worked on studying the feasibility of the direct contact membrane distillation (DCMD) system in the treatment of this RO brine. The system displayed great potential in terms of its flux and salt rejection, where different operating conditions such as the feed temperature, feed salinity, feed and permeate flow rates were varied. The highest flux of 16.7 LMH was reported with a salt rejection of 99.5%. Although the DCMD has displayed potential of enhanced water recovery from highly saline solutions, one of the major drawbacks associated with the operation is the fouling of the membranes which impairs the system performance. An operational run of 77 hours for the treatment of RO brine of 56,500 ppm salinity was performed in order to investigate the impact of fouling of the membrane on the overall operation of the system over long time operations. Over this time period, the flux was observed to have reduced by four times its initial flux. The fouled membrane was characterized through different techniques for the identification of the organic and inorganic foulants that have deposited on the membrane surface. The Infrared Spectroscopy method (IR) was used to identify the organic foulants where SEM images displayed the surface characteristics of the membrane. As for the inorganic foulants, they were identified using X-ray Diffraction (XRD), Ion Chromatography (IC) and Energy Dispersive Spectroscopy (EDS). The major foulants found on the surface of the membrane were inorganic salts such as sodium chloride and calcium sulfate.Keywords: brine treatment, membrane distillation, fouling, characterization
Procedia PDF Downloads 4362015 Application of extraction chromatography to the separation of Sc, Zr and Sn isotopes from target materials
Authors: Steffen Happel
Abstract:
Non-standard isotopes such as Sc-44/47, Zr-89, and Sn-117mare finding interest is increasing in radiopharmaceutical applications. Methods for the separation of these elements from typical target materials were developed. The methods used in this paper are based on the use of extraction chromatographic resins such as UTEVA, TBP, and DGA resin. Information on the selectivity of the resins (Dw values of selected elements in HCl and HNO3 of varying concentration) will be presented as well as results of the method development such as elution studies, chemical recoveries, and decontamination factors. Developed methods are based on the use of vacuum supported separation allowing for fast and selective separation.Keywords: elution, extraction chromatography, radiopharmacy, decontamination factors
Procedia PDF Downloads 4682014 Development of Vacuum Planar Membrane Dehumidifier for Air-Conditioning
Authors: Chun-Han Li, Tien-Fu Yang, Chen-Yu Chen, Wei-Mon Yan
Abstract:
The conventional dehumidification method in air-conditioning system mostly utilizes a cooling coil to remove the moisture in the air via cooling the supply air down below its dew point temperature. During the process, it needs to reheat the supply air to meet the set indoor condition that consumes a considerable amount of energy and affect the coefficient of performance of the system. If the processes of dehumidification and cooling are separated and operated respectively, the indoor conditions will be more efficiently controlled. Therefore, decoupling the dehumidification and cooling processes in heating, ventilation and air conditioning system is one of the key technologies as membrane dehumidification processes for the next generation. The membrane dehumidification method has the advantages of low cost, low energy consumption, etc. It utilizes the pore size and hydrophilicity of the membrane to transfer water vapor by mass transfer effect. The moisture in the supply air is removed by the potential energy and driving force across the membrane. The process can save the latent load used to condense water, which makes more efficient energy use because it does not involve heat transfer effect. In this work, the performance measurements including the permeability and selectivity of water vapor and air with the composite and commercial membranes were conducted. According to measured data, we can choose the suitable dehumidification membrane for designing the flow channel length and components of the planar dehumidifier. The vacuum membrane dehumidification system was set up to examine the effects of temperature, humidity, vacuum pressure, flow rate, the coefficient of performance and other parameters on the dehumidification efficiency. The results showed that the commercial Nafion membrane has better water vapor permeability and selectivity. They are suitable for filtration with water vapor and air. Meanwhile, Nafion membrane has promising potential in the dehumidification process.Keywords: vacuum membrane dehumidification, planar membrane dehumidifier, water vapour and air permeability, air conditioning
Procedia PDF Downloads 1472013 Development of an Integrated Methodology for Fouling Control in Membrane Bioreactors
Authors: Petros Gkotsis, Anastasios Zouboulis, Manasis Mitrakas, Dimitrios Zamboulis, E. Peleka
Abstract:
The most serious drawback in wastewater treatment using membrane bioreactors (MBRs) is membrane fouling which gradually leads to membrane permeability decrease and efficiency deterioration. This work is part of a research project that aims to develop an integrated methodology for membrane fouling control, using specific chemicals which will enhance the coagulation and flocculation of compounds responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate acting as a pre-treatment step. For this purpose, a pilot-scale plant with fully automatic operation achieved by means of programmable logic controller (PLC) has been constructed and tested. The experimental set-up consists of four units: wastewater feed unit, bioreactor, membrane (side-stream) filtration unit and permeate collection unit. Synthetic wastewater was fed as the substrate for the activated sludge. The dissolved oxygen (DO) concentration of the aerobic tank was maintained in the range of 2-3 mg/L during the entire operation by using an aerator below the membrane module. The membranes were operated at a flux of 18 LMH while membrane relaxation steps of 1 min were performed every 10 min. Both commercial and composite coagulants are added in different concentrations in the pilot-scale plant and their effect on the overall performance of the ΜΒR system is presented. Membrane fouling was assessed in terms of TMP, membrane permeability, sludge filterability tests, total resistance and the unified modified fouling index (UMFI). Preliminary tests showed that particular attention should be paid to the addition of the coagulant solution, indicating that pipe flocculation effectively increases hydraulic retention time and leads to voluminous sludge flocs. The most serious drawback in wastewater treatment using MBRs is membrane fouling, which gradually leads to membrane permeability decrease and efficiency deterioration. This results in increased treatment cost, due to high energy consumption and the need for frequent membrane cleaning and replacement. Due to the widespread application of MBR technology over the past few years, it becomes clear that the development of a methodology to mitigate membrane fouling is of paramount importance. The present work aims to develop an integrated technique for membrane fouling control in MBR systems and, thus, contribute to sustainable wastewater treatment.Keywords: coagulation, membrane bioreactor, membrane fouling, pilot plant
Procedia PDF Downloads 3092012 Olefin and Paraffin Separation Using Simulations on Extractive Distillation
Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah
Abstract:
Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process.Keywords: extractive distillation, 1-butene, Aspen Plus, ACN solvent
Procedia PDF Downloads 4482011 Analysis of Mechanotransduction-Induced Microalgae under Direct Membrane Distortion
Authors: Myung Kwon Cho, Seul Ki Min, Gwang Heum Yoon, Jung Hyun Joo, Sang Jun Sim, Hwa Sung Shin
Abstract:
Mechanotransduction is a mechanism that external mechanical stimulation is converted to biochemical activity in the cell. When applying this mechanism to the unicellular green algae Chlamydomonas reinhardtii, the dramatic result that the accumulation of intracellular lipid was up to 60% of dry weight basis occurred. Furthermore, various variations in cellular physiology occurred, but there is a lack of the development of the system and related research for applying that technology to control the mechanical stress and facilitate molecular analyses. In this study, applying a mechanical stress to microalgae, the microfluidic device system that finely induced direct membrane distortion of microalgae. Cellular membrane distortion led to deflagellation, calcium influx and lipid accumulation in microalgae. In conclusion, cytological studies such as mechanotransduction can be actualized by using this system and membrane distortion is a promising inducer for biodiesel production.Keywords: mechanotransduction, microalgae, membrane distortion, biodiesel
Procedia PDF Downloads 3232010 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential
Authors: Viktor Kochkodan
Abstract:
The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification
Procedia PDF Downloads 2512009 Removal of Bulk Parameters and Chromophoric Fractions of Natural Organic Matter by Porous Kaolin/Fly Ash Ceramic Membrane at South African Drinking Water Treatment Plants
Authors: Samkeliso S. Ndzimandze, Welldone Moyo, Oranso T. Mahlangu, Adolph A. Muleja, Alex T. Kuvarega, Thabo T. I. Nkambule
Abstract:
The high cost of precursor materials has hindered the commercialization of ceramic membrane technology in water treatment. In this work, a ceramic membrane disc (approximately 50 mm in diameter and 4 mm thick) was prepared from low-cost starting materials, kaolin, and fly ash by pressing at 200 bar and calcining at 900 °C. The fabricated membrane was characterized for various physicochemical properties, natural organic matter (NOM) removal as well as fouling propensity using several techniques. Further, the ceramic membrane was tested on samples collected from four drinking water treatment plants in KwaZulu-Natal, South Africa (named plants 1-4). The membrane achieved 48.6%, 54.6%, 57.4%, and 76.4% bulk UV254 reduction for raw water at plants 1, 2, 3, and 4, respectively. These removal rates were comparable to UV254 reduction achieved by coagulation/flocculation steps at the respective plants. Further, the membrane outperformed sand filtration steps in plants 1-4 in removing disinfection by-product precursors (8%-32%) through size exclusion. Fluorescence excitation-emission matrices (FEEM) studies showed the removal of fluorescent NOM fractions present in the water samples by the membrane. The membrane was fabricated using an up-scalable facile method, and it has the potential for application as a polishing step to complement conventional processes in water treatment for drinking purposes.Keywords: crossflow filtration, drinking water treatment plants, fluorescence excitation-emission matrices, ultraviolet 254 (UV₂₅₄)
Procedia PDF Downloads 432008 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones
Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar
Abstract:
Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison
Procedia PDF Downloads 3922007 Continuous Production of Prebiotic Pectic Oligosaccharides from Sugar Beet Pulp in a Continuous Cross Flow Membrane Bioreactor
Authors: Neha Babbar, S. Van Roy, W. Dejonghe, S. Sforza, K. Elst
Abstract:
Pectic oligosaccharides (a class of prebiotics) are non-digestible carbohydrates which benefits the host by stimulating the growth of healthy gut micro flora. Production of prebiotic pectic oligosaccharides (POS) from pectin rich agricultural residues involves a cutting of long chain polymer of pectin to oligomers of pectin while avoiding the formation of monosaccharides. The objective of the present study is to develop a two-step continuous biocatalytic membrane reactor (MER) for the continuous production of POS (from sugar beet pulp) in which conversion is combined with separation. Optimization of the ratio of POS/monosaccharides, stability and productivities of the process was done by testing various residence times (RT) in the reactor vessel with diluted (10 RT, 20 RT, and 30 RT) and undiluted (30 RT, 40 RT and 60 RT) substrate. The results show that the most stable processes (steady state) were 20 RT and 30 RT for diluted substrate and 40 RT and 60 RT for undiluted substrate. The highest volumetric and specific productivities of 20 g/L/h and 11 g/gE/h; 17 g/l/h and 9 g/gE/h were respectively obtained with 20 RT (diluted substrate) and 40 RT (undiluted substrate). Under these conditions, the permeates of the reactor test with 20 RT (diluted substrate) consisted of 80 % POS fractions while that of 40 RT (undiluted substrate) resulted in 70% POS fractions. A two-step continuous biocatalytic MER for the continuous POS production looks very promising for the continuous production of tailor made POS. Although both the processes i.e 20 RT (diluted substrate) and 40 RT (undiluted substrate) gave the best results, but for an Industrial application it is preferable to use an undiluted substrate.Keywords: pectic oligosaccharides, membrane reactor, residence time, specific productivity, volumetric productivity
Procedia PDF Downloads 4402006 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12
Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto
Abstract:
Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin
Procedia PDF Downloads 468