Search results for: artificial neural network model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20613

Search results for: artificial neural network model

20613 Estimation of Chronic Kidney Disease Using Artificial Neural Network

Authors: Ilker Ali Ozkan

Abstract:

In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.

Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis

Procedia PDF Downloads 415
20612 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 408
20611 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 146
20610 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students

Authors: J. K. Alhassan, C. S. Actsu

Abstract:

This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.

Keywords: academic performance, artificial neural network, prediction, students

Procedia PDF Downloads 430
20609 Predicting the Success of Bank Telemarketing Using Artificial Neural Network

Authors: Mokrane Selma

Abstract:

The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.

Keywords: bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network

Procedia PDF Downloads 115
20608 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 474
20607 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 461
20606 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 689
20605 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 384
20604 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 463
20603 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network

Authors: R. Boudjelthia

Abstract:

The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.

Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete

Procedia PDF Downloads 346
20602 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 266
20601 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index

Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei

Abstract:

Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.

Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange

Procedia PDF Downloads 422
20600 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 50
20599 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 398
20598 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network

Authors: Hossain A., Chowdhury S. I.

Abstract:

Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.

Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera

Procedia PDF Downloads 72
20597 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 492
20596 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 58
20595 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 485
20594 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction

Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar

Abstract:

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.

Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy

Procedia PDF Downloads 592
20593 A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time.

Keywords: artificial neural network, diarization, speaker indexing, speaker segmentation

Procedia PDF Downloads 469
20592 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 385
20591 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand

Authors: Neeta Kumari, Gopal Pathak

Abstract:

Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.

Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination

Procedia PDF Downloads 510
20590 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 250
20589 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 240
20588 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 132
20587 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria

Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui

Abstract:

The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.

Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration

Procedia PDF Downloads 380
20586 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.

Keywords: speed model, artificial neural network, arterial, mixed traffic

Procedia PDF Downloads 362
20585 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 92
20584 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 420