Search results for: cancer classification
2476 The Role of Txnrd2 Deficiency in Epithelial-to-Mesenchymal-Transition (EMT) and Tumor Formation in Pancreatic Cancer
Authors: Chao Wu
Abstract:
Thioredoxin reductase 2 is a mitochondrial enzyme that belongs to the cellular defense against oxidative stress. We deleted mitochondrial Txnrd2 in a KrasG12D-driven pancreatic tumor model. Despite an initial increase in precursor lesions, tumor incidence decreased significantly. We isolated cancer cell lines from these genetically engineered mice and observed an impaired proliferation and colony formation. Reactive Oxygen Species, as determined by DCF fluorescence, were increased. We detected a higher mitochondrial copy number in Txnrd2-deficient cells (KTP). However, measurement of mitochondrial bioenergetics showed no impairment of mitochondrial function and comparable O₂-consumption and extracellular acidification rates. In addition, the mitochondrial complex composition was affected in Txnrd2 deleted cell lines. To gain better insight into the role of Txnrd2, we deleted Txnrd2 in clones from parental KrasG12D cell lines using Crispr/Cas9 technology. The deletion was confirmed by western blot and activity assay. Interestingly, and in line with previous RNA expression analysis, we saw changes in EMT markers in Txnrd2 deleted cell lines and control cell lines. This might help us explain the reduced tumor incidence in KrasG12D; Txnrd2∆panc mice.Keywords: PDAC, TXNRD2, epithelial-to-mesenchymal-transition, ROS
Procedia PDF Downloads 1212475 Represent Light and Shade of Old Beijing: Construction of Historical Picture Display Platform Based on Geographic Information System (GIS)
Authors: Li Niu, Jihong Liang, Lichao Liu, Huidi Chen
Abstract:
With the drawing of ancient palace painter, the layout of Beijing famous architect and the lens under photographers, a series of pictures which described whether emperors or ordinary people, whether gardens or Hutongs, whether historical events or life scenarios has emerged into our society. These precious resources are scattered around and preserved in different places Such as organizations like archives and libraries, along with individuals. The research combined decentralized photographic resources with Geographic Information System (GIS), focusing on the figure, event, time and location of the pictures to map them with geographic information in webpage and to display them productively. In order to meet the demand of reality, we designed a metadata description proposal, which is referred to DC and VRA standards. Another essential procedure is to formulate a four-tier classification system to correspond with the metadata proposals. As for visualization, we used Photo Waterfall and Time Line to display our resources in front end. Last but not the least, leading the Web 2.0 trend, the research developed an artistic, friendly, expandable, universal and user involvement platform to show the historical and culture precipitation of Beijing.Keywords: historical picture, geographic information system, display platform, four-tier classification system
Procedia PDF Downloads 2692474 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4362473 Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium
Authors: Subodh Kumar, Sanjeev Kumar Sharma, Gaurav Kaushik, Pramod Avti, Phulen Sarma, Bikash Medhi, Krishan Lal Khanduja
Abstract:
Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium.Keywords: cigarette smoke condensate, phospholipase A₂, oxidative stress, alveolar epithelium, bromoenol lactone
Procedia PDF Downloads 1872472 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 1722471 Targeting Apoptosis by Novel Adamantane Analogs as an Emerging Therapy for the Treatment of Hepatocellular Carcinoma Through EGFR, Bcl-2/BAX Cascade
Authors: Hanan M. Hassan, Laila Abouzeid, Lamya H. Al-Wahaibi, George S. G. Shehatou, Ali A. El-Emam
Abstract:
Cancer is a major public health problem and the second leading cause of death worldwide. In 2020, cancer diagnosis and treatment have been negatively affected by the coronavirus 2019 (COVID-19) pandemic. During the quarantine, because of the limited access to healthcare and avoiding exposure to COVID-19 as a contagious disease; patients of cancer suffered deferments in follow-up and treatment regimens leading to substantial worsening of disease, death, and increased healthcare costs. Thus, this study is designed to investigate the molecular mechanisms by which adamantne derivatives attenuate hepatocllular carcinoma experimentally and theoretically. There is a close association between increased resistance to anticancer drugs and defective apoptosis that considered a causative factor for oncogenesis. Cancer cells use different molecular pathways to inhibit apoptosis, BAX and Bcl-2 proteins have essential roles in the progression or inhibition of intrinsic apoptotic pathways triggered by mitochondrial dysfunction. Therefore, their balance ratio can promote the cellular apoptotic fate. In this study, the in vitro cytotoxic effects of seven synthetic adamantyl isothiorea derivatives were evaluated against five human tumor cell lines by MTT assay. Compounds 5 and 6 showed the best results, mostly against hepatocellular carcinoma (HCC). Hence, in vivo studies were performed in male Sprague-Dawley (SD) rats in which experimental hepatocellular carcinoma was induced with thioacetamide (TAA) (200 mg/kg, i.p., twice weekly) for 16 weeks. The most promising compounds, 5 and 6, were administered to treat liver cancer rats at a dose of 10 mg/kg/day for an additional two weeks, and the effects were compared with doxorubicin (DR), the anticancer drug. Hepatocellular carcinoma was evidenced by a dramatic increase in liver indices, oxidative stress markers, and immunohistochemical studies that were accompanied by a plethora of inflammatory mediators and alterations in the apoptotic cascade. Our results showed that treatment with adamantane derivatives 5 and 6 significantly suppressed fibrosis, inflammation, and other histopathological insults resulting in the diminished formation of hepatocyte tumorigenesis. Moreover, administration of the tested compounds resulted in amelioration of EGFR protein expression, upregulation of BAX, and lessening down of Bcl-2 levels that prove their role as apoptosis inducers. Also, the docking simulations performed for adamantane showed good fit and binding to the EGFR protein through hydrogen bond formation with conservative amino acids, which gives a shred of strong evidence for its hepatoprotective effect. In most analyses, the effects of compound 6 were more comparable to DR than compound 5. Our findings suggest that adamantane derivatives 5 and 6 are shown to have cytotoxic activity against HCC in vitro and in vivo, by more than one mechanism, possibly by inhibiting the TLR4-MyD88-NF-κB pathway and targeting EGFR signaling.Keywords: adamantane, EGFR, HCC, apoptosis
Procedia PDF Downloads 1442470 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 1232469 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 6402468 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 3452467 Cytotoxicity of 13 South African Macrofungal Species and Mechanism/s of Action against Cancer Cell Lines
Authors: Gerhardt Boukes, Maryna Van De Venter, Sharlene Govender
Abstract:
Macrofungi have been used for the past two thousand years in Asian countries, and more recently in Western countries, for their medicinal properties. Biological activities include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and immunomodulatory to name a few. Several biologically active compounds have been identified and isolated. Macrofungal research in Africa is poorly documented and to the best of our knowledge non-existent. South Africa has a rich macrofungal biodiversity, which includes endemic and exotic macrofungal species. Ethanolic extracts of 13 macrofungal species, including mushrooms, bracket fungi and puffballs, were prepared and screened for cytotoxicity against a panel of seven cell lines, including A549 (human lung adenocarcinoma), HeLa (human cervical adenocarcinoma), HT-29 (human colorectal adenocarcinoma), MCF7 (human breast adenocarcinoma), MIA PaCa-2 (human pancreatic ductal adenocarcinoma), PC-3 (human prostate adenocarcinoma) and Vero (African green monkey kidney epithelial) cells using MTT. Cell lines were chosen according to the most prevalent cancer types affecting males and females in South Africa and globally, and the mutations they contain. Preliminary results have shown that three of the macrofungal genera, i.e. Fomitopsis, Gymnopilus and Pycnoporus, have shown cytotoxic activity, ranging between IC50 ~20 and 200 µg/mL. The molecular mechanism of action contributing to cell death investigated and being investigated include apoptosis (i.e. DNA cell cycle arrest, caspase-3 activation and mitochondrial membrane potential), autophagy (i.e. acridine orange and LC3B staining) and ER stress (i.e. thioflavin T staining and caspase-12) in the presence of melphalan, chloroquine and thapsigargin/tuncamycin as positive controls, respectively. The genus, Pycnoporus, has shown the best cytotoxicity of the three macrofungal genera. Future work will focus on the identification and isolation of novel active compounds and elucidating the mechanism/s of action.Keywords: cancer, cytotoxicity, macrofungi, mechanism/s of action
Procedia PDF Downloads 2462466 The Effectiveness of Scalp Cooling Therapy on Reducing Chemotherapy Induced Alopecia: A Critical Literature Review
Authors: M. Krishna
Abstract:
The study was intended to identify if scalp cooling therapy is effective on preventing chemotherapy-induced hair loss among cancer patients. Critical literature of non-randomized controlled trials was used to investigate whether scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. The review identified that scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. Most of the patients receiving chemotherapy experience alopecia. It is also perceived as the worst effect of chemotherapy. This may be severe and lead the patients to withdraw the chemo treatment. The image disturbance caused by alopecia will make the patient depressed and will lead to declined immunity. With the knowledge on effectiveness of scalp cooling therapy on preventing chemotherapy-induced alopecia, patient undergoing chemotherapy will not be hesitant to undergo the treatment. Patients are recommended to go through scalp cooling therapy every chemo cycle and the proper therapy duration is 30 minutes before, during chemo. The suggested duration of the scalp cooling therapy is 45-90 minutes for an effective and positive outcome. This finding is excluding other factors of alopecia such as menopause, therapeutic drugs, poor hair density, liver function problems, and drug regimes.Keywords: alopecia, cancer, chemotherapy, scalp cooling therapy
Procedia PDF Downloads 2052465 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics
Authors: Neha Singh
Abstract:
The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits
Procedia PDF Downloads 2602464 Aboriginal Head and Neck Cancer Patients Have Different Patterns of Metastatic Involvement, and Have More Advanced Disease at Diagnosis
Authors: Kim Kennedy, Daren Gibson, Stephanie Flukes, Chandra Diwakarla, Lisa Spalding, Leanne Pilkington, Andrew Redfern
Abstract:
Introduction: The mortality gap in Aboriginal Head and Neck Cancer is well known, but the reasons for poorer survival are not well established. Aim: We aimed to evaluate the locoregional and metastatic involvement, and stage at diagnosis, in Aboriginal compared with non-Aboriginal patients. Methods: We performed a retrospective cohort analysis of 320 HNC patients from a single centre in Western Australia, identifying 80 Aboriginal patients and 240 non-Aboriginal patients matched on a 1:3 ratio by sites, histology, rurality, and age. We collected data on the patient characteristics, tumour features, regions involved, stage at diagnosis, treatment history, and survival and relapse patterns, including sites of metastatic and locoregional involvement. Results: Aboriginal patients had a significantly higher incidence of lung metastases (26.3% versus 13.7%, p=0.009). Aboriginal patients also had a numerically but non-statistically significant higher incidence of thoracic nodal involvement (10% vs 5.8%) and malignant pleural effusions (3.8% vs 2.5%). Aboriginal patients also had a numerically but not statistically significantly higher incidence of adrenal and bony involvement. Interestingly, non-Aboriginal patients had an increased rate of cutaneous (2.1% vs 0%) and liver metastases (4.6% vs 2.5%) compared with Aboriginal patients. In terms of locoregional involvement, Aboriginal patients were more than twice as likely to have contralateral neck involvement (58.8% vs 24.2%, p<0.00001), and 30% more likely to have ipsilateral neck lymph node involvement (78.8% vs 60%, p=0.002) than non-Aboriginal patients. Aboriginal patients had significantly more advanced disease at diagnosis (p=0.008). Aboriginal compared with non-Aboriginal patients were less likely to present with stage I (7.5% vs 22.5%), stage II (11.3% vs 13.8%), or stage III disease (13.8% vs 17.1%), and more likely to present with more advanced stage IVA (42.5% vs 34.6%), stage IVB (15% vs 7.1%), or stage IVC (10% vs 5%) disease (p=0.008). Number of regions of disease involvement was higher in Aboriginal patients (median 3, mean 3.64, range 1-10) compared with non-Aboriginal patients (median 2, mean 2.80, range 1-12). Conclusion: Aboriginal patients had a significantly higher incidence of lung metastases, and significantly more frequent involvement of ipsilateral and contralateral neck lymph nodes. Aboriginal patients also had significantly more advanced disease at presentation with a higher stage at diagnosis. We are performing further analyses to investigate explanations for these findings.Keywords: head and neck cancer, Aboriginal, metastases, locoregional, pattern of relapse, sites of disease
Procedia PDF Downloads 682463 Traditional Medicine and Islamic Holistic Approach in Palliative Care Management of Terminal Illpatient of Cancer
Authors: Mohammed Khalil Ur Rahman, Mohammed Alsharon, Arshad Muktar, Zahid Shaik
Abstract:
Any ailment can go into terminal stages, cancer being one such disease which is many times detected in latent stages. Cancer is often characterized by constitutional symptoms which are agonizing in nature which disturbs patients and their family as well. In order to relieve such intolerable symptoms treatment modality employed is known to be ‘Palliative Care’. The goal of palliative care is to enhance patient’s quality of life by relieving or rather reducing the distressing symptoms of patients such as pain, nausea/ vomiting, anorexia/loss of appetite, excessive salivation, mouth ulcers, weight loss, constipation, oral thrush, emaciation etc. which are due to the effect of disease or due to the undergoing treatment such as chemotherapy, radiation etc. Ayurveda and Unani as well as other traditional medicines is getting more and more international attention in recent years and Ayurveda and Unani holistic perspective of the disease, it seems that there are many herbs and herbomineral preparation which can be employed in the treatment of malignancy and also in palliative care. Though many of them have yet to be scientifically proved as anti-cancerous but there is definitely a positive lead that some of these medications relieve the agonising symptoms thereby making life of the patient easy. Health is viewed in Islam in a holistic way. One of the names of the Quran is al-shifa' meaning ‘that which heals’ or ‘the restorer of health’ to refer to spiritual, intellectual, psychological, and physical health. The general aim of medical science, according to Islam, is to secure and adopt suitable measures which, with Allah’s permission, help to preserve or restore the health of the human body. Islam motivates the Physician to view the patient as one organism. The patient has physical, social, psychological, and spiritual dimensions that must be considered in synthesis with an integrated, holistic approach. Aims & Objectives: - To suggest herbs which are mentioned in Ayurveda Unani with potential palliative activity in case of Cancer patients. - Most of tibb nabawi [Prophetic Medicine] is preventive medicine and must have been divinely inspired. - Spiritual Aspects of Healing: Prayer, dua, recitation of the Quran - Remembrance of Allah play a central role.Materials & Method: Literary review of the herbs supported with experiential evidence will be discussed. Discussion: On the basis of collected data subject will be discussed in length. Conclusion: Will be presented in paper.Keywords: palliative care, holistic, Ayurvedic and Unani traditional system of medicine, Quran, hadith
Procedia PDF Downloads 3392462 A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses
Authors: Arjun Prakash, Samanvitha H.
Abstract:
BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity.Keywords: digital mammography, breast cancer, ultrasound, elastography
Procedia PDF Downloads 1042461 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 2572460 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 1972459 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress
Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury
Abstract:
Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.Keywords: JNK, autophagy, drug resistance, cancer
Procedia PDF Downloads 2882458 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics
Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah
Abstract:
Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 2962457 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2082456 Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity
Authors: Amir Amiri, Naghmeh Morakabati
Abstract:
During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.Keywords: chitosan, encapsulation, essential oil, nanogel
Procedia PDF Downloads 2722455 The Influence of Nutritional and Immunological Status on the Prognosis of Head and Neck Cancer
Authors: Ching-Yi Yiu, Hui-Chen Hsu
Abstract:
Objectives: Head and neck cancer (HNC) is a big global health problem in the world. Despite the development of diagnosis and treatment, the overall survival of HNC is still low. The well recognition of the interaction of the host immune system and cancer cells has led to realizing the processes of tumor initiation, progression and metastasis. Many systemic inflammatory responses have been shown to play a crucial role in cancer progression. The pre and post-treatment nutritional and immunological status of HNC patients is a reliable prognostic indicator of tumor outcomes and survivors. Methods: Between July 2020 to June 2022, We have enrolled 60 HNC patients, including 59 males and 1 female, in Chi Mei Medical Center, Liouying, Taiwan. The age distribution was from 37 to 81 years old (y/o), with a mean age of 57.6 y/o. We evaluated the pre-and post-treatment nutritional and immunological status of these HNC patients with body weight, body weight loss, body mass index (BMI), whole blood count including hemoglobin (Hb), lymphocyte, neutrophil and platelet counts, biochemistry including prealbumin, albumin, c-reactive protein (CRP), with the time period of before treatment, post-treatment 3 and 6 months. We calculated the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) to assess how these biomarkers influence the outcomes of HNC patients. Results: We have carcinoma of the hypopharynx in 21 cases with 35%, carcinoma of the larynx in 9 cases, carcinoma of the tonsil and tongue every 6 cases, carcinoma soft palate and tongue base every 5 cases, carcinoma of buccal mucosa, retromolar trigone and mouth floor every 2 cases, carcinoma of the hard palate and low lip each 1 case. There were stage I 15 cases, stage II 13 cases, stage III 6 cases, stage IVA 10 cases, and stage IVB 16 cases. All patients have received surgery, chemoradiation therapy or combined therapy. We have wound infection in 6 cases, 2 cases of pharyngocutaneous fistula, flap necrosis in 2 cases, and mortality in 6 cases. In the wound infection group, the average BMI is 20.4 kg/m2; the average Hb is 12.9 g/dL, the average albumin is 3.5 g/dL, the average NLR is 6.78, and the average PLR is 243.5. In the PC fistula and flap necrosis group, the average BMI is 21.65 kg/m2; the average Hb is 11.7 g/dL, the average albumin is 3.15 g/dL, average NLR is 13.28, average PLR is 418.84. In the mortality group, the average BMI is 22.3 kg/m2; the average Hb is 13.58 g/dL, the average albumin is 3.77 g/dL, the average NLR is 6.06, and the average PLR is 275.5. Conclusion: HNC is a big challenging public health problem worldwide, especially in the high prevalence of betel nut consumption area Taiwan. Besides the definite risk factors of smoking, drinking and betel nut related, the other biomarkers may play significant prognosticators in the HNC outcomes. We concluded that the average BMI is less than 22 kg/m2, the average Hb is low than 12.0 g/dL, the average albumin is low than 3.3 g/dL, the average NLR is low than 3, and the average PLR is more than 170, the surgical complications and mortality will be increased, and the prognosis is poor in HNC patients.Keywords: nutritional, immunological, neutrophil-to-lymphocyte ratio, paltelet-to-lymphocyte ratio.
Procedia PDF Downloads 792454 Assessment of Human Factors Analysis and Classification System in Construction Accident Prevention
Authors: Zakari Mustapha, Clinton Aigbavboa, Wellington Didi Thwala
Abstract:
Majority of the incidents and accidents in complex high-risk systems that exist in the construction industry and other sectors have been attributed to unsafe acts of workers. The purpose of this paper was to asses Human Factors Analysis and Classification System (HFACS) in construction accident prevention. The study was conducted through the use of secondary data from journals, books and internet to achieve the objective of the study. The review of literature looked into details of different views from different scholars about HFACS framework in accidents investigations. It further highlighted on various sections or disciplines of accident occurrences in human performance within the construction. The findings from literature review showed that unsafe acts of a worker and unsafe working conditions are the two major causes of accident in the construction industry.Most significant factor in the cause of site accident in the construction industry is unsafe acts of a worker. The findings also show how the application of HFACS framework in the investigation of accident will lead to the identification of common trends. Further findings show that provision for the prevention of accident will be made based on past accident records to identify and prioritize where intervention is needed within the construction industry.Keywords: accident, construction, HFACS, unsafe acts
Procedia PDF Downloads 3192453 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques
Authors: Kishor Chandra Kandpal, Amit Kumar
Abstract:
The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests
Procedia PDF Downloads 2012452 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures
Authors: Latife Merve Oktay, Berrin Tugrul
Abstract:
Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer
Procedia PDF Downloads 3532451 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3712450 Comprehensive Care and the Right to Autonomy of Children and Adolescents with Cancer
Authors: Sandra Soca Lozano, Teresa Isabel Lozano Pérez, Germain Weber
Abstract:
Cancer is a chronic disease of high prevalence in children and adolescents. Medical care in Cuba is carried out by a multidisciplinary team and family is the mediator between this team and the patient. Around this disease, there are interwoven many stereotypes and taboos by its relation to death. In this research report, we describe the work paradigm of psychological care to patients suffering from these diseases in the University Pediatric Hospital Juan Manuel Márquez of Havana, Cuba. We present the psychosocial factors that must be taken into account to provide comprehensive care and ensuring the quality of life of patients and their families. We also present the factors related to the health team and the management of information done with the patient. This is a descriptive proposal from the working experience accumulated in the named institution and in the review of the literature. As a result of this report we make a proposal of teamwork and the aspects in which psychological intervention should be continue performing in terms of increasing the quality of the care made by the health team. We conclude that it is necessary to continue improving the information management of children and adolescents with theses health problems and took into account their right to autonomy.Keywords: comprehensive care, management of information, psychosocial factors, right to autonomy
Procedia PDF Downloads 3332449 Study of Three-Dimensional Computed Tomography of Frontoethmoidal Cells Using International Frontal Sinus Anatomy Classification
Authors: Prabesh Karki, Shyam Thapa Chettri, Bajarang Prasad Sah, Manoj Bhattarai, Sudeep Mishra
Abstract:
Introduction: Frontal sinus is frequently described as the most difficult sinus to access surgically due to its proximity to the cribriform plate, orbit, and anterior ethmoid artery. Frontal sinus surgery requires a detailed understanding of the cellular structure and FSDP unique to each patient, making high-resolution CT scans an indispensable tool to assess the difficulty of planned sinus surgery. International Frontal Sinus Anatomy Classification (IFAC) was developed to provide a more precise nomenclature for cells in the frontal recess, classifying cells based on their anatomic origin. Objectives: To assess the proportion of frontal cell variants defined by IFAC, variation with respect to age and gender. Methods: 54 cases were enrolled after a detailed clinical history, thorough general and physical examinations, and CT a report ordered in a film. Assessment and tabulation of the presence of frontal cells according to the IFAC analyzed. The prevalence of each cell type was calculated, and data were entered in MS Excel and analyzed using Statistical Package for the Social Sciences (SPSS). Descriptive statistics and frequencies were defined for categorical and numerical variables. Frequency, percentage, the mean and standard deviation were calculated. Result: Among 54 patients, 30 (55.6%) were male and 24 (44.4%) were female. The patient enrolled ranged from 18 to 78 years. Majority33.3% (n=18) were in age group of >50 years.According to IFAC, Agger nasi cells (92.6%) were most common, whereas supraorbital ethmoidal cells were least common 16 (29.6%). Prevalence of other frontoethmoidal cells was SAC- 57.4%, SAFC- 38.9%, SBC- 74.1%, SBFC- 33.3%, FSC- 38.9% of 54 cases. Conclusion: IFAC is an international consensus document that describes an anatomically precise nomenclature for classifying frontoethmoidal cells' anatomy. This study has defined the prevalence, symmetry and reliability of frontoethmoidal cells as established by the IFAC system as in other parts of the world.Keywords: frontal sinus, frontoethmoidal cells, international frontal sinus anatomy classification
Procedia PDF Downloads 982448 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 782447 System for Electromyography Signal Emulation Through the Use of Embedded Systems
Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.
Abstract:
This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.Keywords: classification, electromyography, embedded system, emulation, physiological signals
Procedia PDF Downloads 108