Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30

Search results for: kurtosis

30 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed

Authors: Alexander N. Pisarchik, Parth Chholak

Abstract:

Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.

Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time

Procedia PDF Downloads 26
29 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out by using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature have been defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the leading parameters such as the pressure distribution, minimal film thickness, viscosity, and density changes. The obtained results show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. The rough surface with kurtosis value over 3 influences the fluctuated shape of pressure distribution higher than other cases.

Keywords: CFD, EHL, kurtosis, surface roughness

Procedia PDF Downloads 219
28 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images

Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge

Abstract:

Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.

Keywords: band selection, fuzzy c-means, k-means, hyperspectral image

Procedia PDF Downloads 231
27 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring

Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan

Abstract:

The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.

Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test

Procedia PDF Downloads 122
26 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea

Procedia PDF Downloads 19
25 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 295
24 Contrasted Mean and Median Models in Egyptian Stock Markets

Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid

Abstract:

Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.

Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming

Procedia PDF Downloads 190
23 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210

Procedia PDF Downloads 207
22 Spatial Climate Changes in the Province of Macerata, Central Italy, Analyzed by GIS Software

Authors: Matteo Gentilucci, Marco Materazzi, Gilberto Pambianchi

Abstract:

Climate change is an increasingly central issue in the world, because it affects many of human activities. In this context regional studies are of great importance because they sometimes differ from the general trend. This research focuses on a small area of central Italy which overlooks the Adriatic Sea, the province of Macerata. The aim is to analyze space-based climate changes, for precipitation and temperatures, in the last 3 climatological standard normals (1961-1990; 1971-2000; 1981-2010) through GIS software. The data collected from 30 weather stations for temperature and 61 rain gauges for precipitation were subject to quality controls: validation and homogenization. These data were fundamental for the spatialization of the variables (temperature and precipitation) through geostatistical techniques. To assess the best geostatistical technique for interpolation, the results of cross correlation were used. The co-kriging method with altitude as independent variable produced the best cross validation results for all time periods, among the methods analysed, with 'root mean square error standardized' close to 1, 'mean standardized error' close to 0, 'average standard error' and 'root mean square error' with similar values. The maps resulting from the analysis were compared by subtraction between rasters, producing 3 maps of annual variation and three other maps for each month of the year (1961/1990-1971/2000; 1971/2000-1981/2010; 1961/1990-1981/2010). The results show an increase in average annual temperature of about 0.1°C between 1961-1990 and 1971-2000 and 0.6 °C between 1961-1990 and 1981-2010. Instead annual precipitation shows an opposite trend, with an average difference from 1961-1990 to 1971-2000 of about 35 mm and from 1961-1990 to 1981-2010 of about 60 mm. Furthermore, the differences in the areas have been highlighted with area graphs and summarized in several tables as descriptive analysis. In fact for temperature between 1961-1990 and 1971-2000 the most areally represented frequency is 0.08°C (77.04 Km² on a total of about 2800 km²) with a kurtosis of 3.95 and a skewness of 2.19. Instead, the differences for temperatures from 1961-1990 to 1981-2010 show a most areally represented frequency of 0.83 °C, with -0.45 as kurtosis and 0.92 as skewness (36.9 km²). Therefore it can be said that distribution is more pointed for 1961/1990-1971/2000 and smoother but more intense in the growth for 1961/1990-1981/2010. In contrast, precipitation shows a very similar shape of distribution, although with different intensities, for both variations periods (first period 1961/1990-1971/2000 and second one 1961/1990-1981/2010) with similar values of kurtosis (1st = 1.93; 2nd = 1.34), skewness (1st = 1.81; 2nd = 1.62 for the second) and area of the most represented frequency (1st = 60.72 km²; 2nd = 52.80 km²). In conclusion, this methodology of analysis allows the assessment of small scale climate change for each month of the year and could be further investigated in relation to regional atmospheric dynamics.

Keywords: climate change, GIS, interpolation, co-kriging

Procedia PDF Downloads 34
21 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis

Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri

Abstract:

In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.

Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum

Procedia PDF Downloads 327
20 Integrated Nested Laplace Approximations For Quantile Regression

Authors: Kajingulu Malandala, Ranganai Edmore

Abstract:

The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.

Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation

Procedia PDF Downloads 25
19 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing

Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan

Abstract:

This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.

Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium

Procedia PDF Downloads 226
18 Examining the Relationship between Chi-Square Test Statistics and Skewness of Weibull Distribution: Simulation Study

Authors: Rafida M. Elobaid

Abstract:

Most of the literature on goodness-of-fit test try to provide a theoretical basis for studying empirical distribution functions. Such goodness-of-fit tests are Kolmogorove-Simirnov and Crumer-Von Mises Type tests. However, it is likely that most of literature has not focused in details on the relationship of the values of the test statistics and skewness or kurtosis. The aim of this study is to investigate the behavior of the values of the χ2 test statistic with the variation of the skewness of right skewed distribution. A simulation study is conducted to generate random numbers from Weibull distribution. For a fixed sample sizes, different levels of skewness are considered, and the corresponding values of the χ2 test statistic are calculated. Using different sample sizes, the results show an inverse relationship between the value of χ2 test and the level of skewness for Wiebull distribution, i.e the value of χ2 test statistic decreases as the value of skewness increases. The research results also show that with large values of skewness we are more confident that the data follows the assumed distribution. Nonparametric Kendall τ test is used to confirm these results.

Keywords: goodness-of-fit test, chi-square test, simulation, continuous right skewed distributions

Procedia PDF Downloads 248
17 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 354
16 Person-Environment Fit (PE Fit): Evidence from Brazil

Authors: Jucelia Appio, Danielle Deimling De Carli, Bruno Henrique Rocha Fernandes, Nelson Natalino Frizon

Abstract:

The purpose of this paper is to investigate if there are positive and significant correlations between the dimensions of Person-Environment Fit (Person-Job, Person-Organization, Person-Group and Person-Supervisor) at the “Best Companies to Work for” in Brazil in 2017. For that, a quantitative approach was used with a descriptive method being defined as a research sample the "150 Best Companies to Work for", according to data base collected in 2017 and provided by Fundação Instituto of Administração (FIA) of the University of São Paulo (USP). About the data analysis procedures, asymmetry and kurtosis, factorial analysis, Kaiser-Meyer-Olkin (KMO) tests, Bartlett sphericity and Cronbach's alpha were used for the 69 research variables, and as a statistical technique for the purpose of analyzing the hypothesis, Pearson's correlation analysis was performed. As a main result, we highlight that there was a positive and significant correlation between the dimensions of Person-Environment Fit, corroborating the H1 hypothesis that there is a positive and significant correlation between Person-Job Fit, Person-Organization Fit, Person-Group Fit and Person-Supervisor Fit.

Keywords: Human Resource Management (HRM), Person-Environment Fit (PE), strategic people management, best companies to work for

Procedia PDF Downloads 39
15 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution

Procedia PDF Downloads 93
14 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 46
13 Comparing Accuracy of Semantic and Radiomics Features in Prognosis of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer

Authors: Mahya Naghipoor

Abstract:

Purpose: Non-small cell lung cancer (NSCLC) is the most common lung cancer type. Epidermal growth factor receptor (EGFR) mutation is the main reason which causes NSCLC. Computed tomography (CT) is used for diagnosis and prognosis of lung cancers because of low price and little invasion. Semantic analyses of qualitative CT features are based on visual evaluation by radiologist. However, the naked eye ability may not assess all image features. On the other hand, radiomics provides the opportunity of quantitative analyses for CT images features. The aim of this review study was comparing accuracy of semantic and radiomics features in prognosis of EGFR mutation in NSCLC. Methods: For this purpose, the keywords including: non-small cell lung cancer, epidermal growth factor receptor mutation, semantic, radiomics, feature, receiver operating characteristics curve (ROC) and area under curve (AUC) were searched in PubMed and Google Scholar. Totally 29 papers were reviewed and the AUC of ROC analyses for semantic and radiomics features were compared. Results: The results showed that the reported AUC amounts for semantic features (ground glass opacity, shape, margins, lesion density and presence or absence of air bronchogram, emphysema and pleural effusion) were %41-%79. For radiomics features (kurtosis, skewness, entropy, texture, standard deviation (SD) and wavelet) the AUC values were found %50-%86. Conclusions: In conclusion, the accuracy of radiomics analysis is a little higher than semantic in prognosis of EGFR mutation in NSCLC.

Keywords: lung cancer, radiomics, computer tomography, mutation

Procedia PDF Downloads 21
12 Effect of Depth on Texture Features of Ultrasound Images

Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes

Abstract:

In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.

Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering

Procedia PDF Downloads 170
11 Acoustic Emission Techniques in Monitoring Low-Speed Bearing Conditions

Authors: Faisal AlShammari, Abdulmajid Addali, Mosab Alrashed

Abstract:

It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm). This paper addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this paper program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in the out race. It was found that these parameters effectually identify the presence of a small fault seeded into the outer races. Also, it is concluded that rotational speed has a strong influence on the measured AE parameters but that they are entirely independent of the load under such load and speed conditions.

Keywords: acoustic emission, condition monitoring, NDT, statistical analysis

Procedia PDF Downloads 65
10 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling

Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao

Abstract:

In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.

Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis

Procedia PDF Downloads 28
9 Evaluation of Key Performance Indicators as Determinants of Dividend Paid on Ordinary Shares in Nigeria Banking Sector

Authors: Oliver Ikechukwu Inyiama, Boniface Uche Ugwuanyi

Abstract:

The aim of the research is to evaluate the key financial performance indicators that help both managers and their shareholders of Nigerian Banks to determine the appropriate dividend payout to their ordinary shareholders in an accounting year. Profitability, total asset, and earnings of commercial banks were selected as key performance indicators in Nigeria Banking Sector. They represent the independent variables of the study while dividend per share is the proxy for the dividend paid on ordinary shares which represent the dependent variable. The effect of profitability, total asset and earnings on dividend per share were evaluated through the ordinary least square method of multiple regression analysis. Test for normality of frequency distribution was conducted through descriptive statistics such as Jacque Bera Statistic, skewness and kurtosis. Rate of dividend payout was subsequently applied as an alternate dependent variable to test for robustness of the earlier results. The 64% adjusted R-squared of the pooled data indicates that profitability, total asset, and earnings explain the variation in dividend per share during the period under research while the remaining 36% variation in dividend per share could be explained by changes in other variables not captured by this study as well as the error term. The study concentrated on four leading Nigeria Commercial Banks namely; First Bank of Nigeria Plc, GTBank Plc, United Bank for Africa Plc and Zenith International Bank Plc. Dividend per share was found to be positively affected by total assets and earnings of the commercial banks. However, profitability which was proxied by profit after tax had a negative effect on dividend per share. The implication of the findings is that commercial banks in Nigeria pay more dividend when they are having a dwindling fortune in order to retain the confidence of the shareholders provided their gross earnings and size is on the increase. Therefore, the management and board of directors of Nigeria commercial banks should apply decent marketing strategies to enhance earnings through investment in profitable ventures for an improved dividend payout rate.

Keywords: assets, banks, indicators, performance, profitability, shares

Procedia PDF Downloads 27
8 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 181
7 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area

Authors: Melik Kara, Gulsah Tulger Kara

Abstract:

The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.

Keywords: trace elements, surface soil, source apportionment, Izmir

Procedia PDF Downloads 39
6 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 241
5 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 304
4 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 8
3 Determinants of Long Acting Reversible Contraception Utilization among Women (15-49) in Uganda: Analysis of 2016 PMA2020 Uganda Survey

Authors: Nulu Nanono

Abstract:

Background: The Ugandan national health policy and the national population policy all recognize the need to increase access to quality, affordable, acceptable and sustainable contraceptive services for all people but provision and utilization of quality services remains low. Two contraceptive methods are categorized as long-acting temporary methods: intrauterine contraceptive devices (IUCDs) and implants. Copper-containing IUCDs, generally available in Ministry of Health (MoH) family planning programs and is effective for at least 12 years while Implants, depending on the type, last for up to three to seven years. Uganda’s current policy and political environment are favorable towards achieving national access to quality and safe contraceptives for all people as evidenced by increasing government commitments and innovative family planning programs. Despite the increase of modern contraception use from 14% to 26%, long acting reversible contraceptive (LARC) utilization has relatively remained low with less than 5% using IUDs & Implants which in a way explains Uganda’s persistent high fertility rates. Main question/hypothesis: The purpose of the study was to examine relationship between the demographic, socio-economic characteristics of women, health facility factors and long acting reversible contraception utilization. Methodology: LARC utilization was investigated comprising of the two questions namely are you or your partner currently doing something or using any method to delay or avoid getting pregnant? And which method or methods are you using? Data for the study was sourced from the 2016 Uganda Performance Monitoring and Accountability 2020 Survey comprising of 3816 female respondents aged 15 to 49 years. The analysis was done using the Chi-squared tests and the probit regression at bivariate and multivariate levels respectively. The model was further tested for validity and normality of the residuals using the Sharipo wilks test and test for kurtosis and skewness. Results: The results showed the model the age, parity, marital status, region, knowledge of LARCs, availability of LARCs to be significantly associated with long acting contraceptive utilization with p value of less than 0.05. At the multivariate analysis level, women who had higher parities (0.000) tertiary education (0.013), no knowledge about LARCs (0.006) increases their probability of using LARCs. Furthermore while women age 45-49, those who live in the eastern region reduces their probability of using LARCs. Knowledge contribution: The findings of this study join the debate of prior research in this field and add to the body of knowledge related to long acting reversible contraception. An outstanding and queer finding from the study is the non-utilization of LARCs by women who are aware and have knowledge about them, this may be an opportunity for further research to investigate the attribution to this.

Keywords: contraception, long acting, utilization, women (15-49)

Procedia PDF Downloads 51
2 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 225
1 Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

Authors: Steven W. Carruthers

Abstract:

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Keywords: effectiveness, equipercentile equating, IRT, learning games, linear equating, mean-sigma equating

Procedia PDF Downloads 115