Search results for: smart-nano materials
5669 Effect of Concentration of Alkaline and Curing Temperature on Compressive Strength of Geopolymer Concert
Authors: Nursah Kutuk, Sevil Cetinkaya
Abstract:
Geopolymers are becoming new concrete materials to use alongside cement, which are formed due to reaction between alumino-silicates and oxides with alkaline media. Silicates obtained from natural minerals or industrial wastes are used for geopolymer synthesis. Geopolymers have recently received wide attention because of their advantages over other cementitious material like Portland cement. Some of the advantages are high compressive strength, low environmental impact, chemical and fire resistance and thermal stability. In this study, geopolymers were prepared by using inorganic materials such as kaolinite and calcite. The experiments were carried out by varying the concentration of NaOH as 5, 10, 15 and 20 M, and at cure temperature of 22, 45 and 65 °C. Compressive strengths for each mixes at each cure temperature were measured. Results of the analyses indicated that the compressive strength of geopolymers did not increase steadily with increasing concentration of NaOH, but did increase steadily with increasing cure temperature. We examined the effect Na2SiO3/NaOH weight ratio on the properties of the geopolymers, too. It was seen that Na2SiO3/NaOH weight ratio was also important to prepare geopolymers that can be applied to construction industry.Keywords: geopolymers, compressive strength, kaolinite, calcite
Procedia PDF Downloads 3015668 Environmental Risk Assessment for Beneficiary Use of Coal Combustion Residues Using Leaching Environmental Assessment Framework
Authors: D. V. S. Praneeth, V. R. Sankar Cheela, Brajesh Dubey
Abstract:
Coal Combustion (CC) residues are the major by-products from thermal power plants. The disposal of ash on to land creates havoc to environment and humans. The leaching of the constituent elements pollutes ground water. Beneficiary use of coal combustion residues in structural components is being investigated as a part of this study. This application reduces stress on the convention materials in the construction industry. The present study involves determination of leaching parameters of the CC residues. Batch and column studies are performed based on Leaching Environmental Assessment Framework (LEAF) protocol. The column studies are conducted to simulate the real time percolation conditions in the field. The structural and environmental studies are performed to determine the usability of CC residues as bricks. The physical, chemical, geo environmental and mechanical properties of the alternate materials are investigated. Scanning electron microscopy (SEM), X-Ray Diffraction analysis (XRD), X-ray fluorescence (XRF) and Energy Dispersive X-ray Spectroscopy tests were conducted to determine the characteristics of CC residue ash and bricks.Keywords: coal combustion residues, LEAF, leaching, SEM
Procedia PDF Downloads 3175667 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods
Procedia PDF Downloads 1905666 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation
Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey
Abstract:
Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering
Procedia PDF Downloads 4565665 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres
Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar
Abstract:
This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob powder at varying percentages of 1 – 4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without corn cob replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the corn cob powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% corn cob powder as filler materials had the optimum properties which satisfied the minimum requirements of relevant standards for fibre cement flat sheets.Keywords: agricultural waste, building applications, fibre-cement board, kraft pulp fibre, sustainability
Procedia PDF Downloads 965664 Construction Innovation: Support for 3D Printing House
Authors: Andrea Palazzo, Daniel Macek, Veronika Malinova
Abstract:
Contour processing is the new technology challenge for architects and construction companies. The many advantages it promises make it one of the most interesting solutions for construction in terms of automation of building processes. The technology for 3D printing houses offers many application possibilities, from low-cost construction, to being considered by NASA for visionary projects as a good solution for building settlements on other planets. Another very important point is that clients, as architects, will no longer have many limits in design concerning ideas and creativity. The prices for real estate are constantly increasing and the lack of availability of construction materials as well as the speculation that has been created around it in 2021 is bringing prices to such a level that in the future real estate developers risk not being able to find customers for these ultra-expensive homes. Hence, this paper starts with the introduction of 3D printing, which now has the potential to gain an important position in the market, becoming a valid alternative to the classic construction process. This technology is not only beneficial from an economic point of view but it is also a great opportunity to have an impact on the environment by reducing CO2 emissions. Further on in the article we will also understand if, after the COP 26 (2021 United Nations Climate Change Conference), world governments could also push towards building technologies that reduce the waste materials that are needed to be disposed of and at the same time reduce emissions with the contribution of governmental funds. This paper will give us insight on the multiple benefits of 3D printing and emphasise the importance of finding new solutions for materials that can be used by the printer. Therefore, based on the type of material, it will be possible to understand the compatibility with current regulations and how the authorities will be inclined to support this technology. This will help to enable the rise and development of this technology in Europe and in the rest of the world on actual housing projects and not only on prototypes.Keywords: additive manufacturing, contour crafting, development, new regulation, printing material
Procedia PDF Downloads 1985663 Grain Size Effect of Durability of Bio-Clogging Treatment
Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht
Abstract:
In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.Keywords: bio-clogging, granulometry, permeability, nutrition
Procedia PDF Downloads 4095662 Reactivation of Hydrated Cement and Recycled Concrete Powder by Thermal Treatment for Partial Replacement of Virgin Cement
Authors: Gustave Semugaza, Anne Zora Gierth, Tommy Mielke, Marianela Escobar Castillo, Nat Doru C. Lupascu
Abstract:
The generation of Construction and Demolition Waste (CDW) has globally increased enormously due to the enhanced need in construction, renovation, and demolition of construction structures. Several studies investigated the use of CDW materials in the production of new concrete and indicated the lower mechanical properties of the resulting concrete. Many other researchers considered the possibility of using the Hydrated Cement Powder (HCP) to replace a part of Ordinary Portland Cement (OPC), but only very few investigated the use of Recycled Concrete Powder (RCP) from CDW. The partial replacement of OPC for making new concrete intends to decrease the CO₂ emissions associated with OPC production. However, the RCP and HCP need treatment to produce the new concrete of required mechanical properties. The thermal treatment method has proven to improve HCP properties before their use. Previous research has stated that for using HCP in concrete, the optimum results are achievable by heating HCP between 400°C and 800°C. The optimum heating temperature depends on the type of cement used to make the Hydrated Cement Specimens (HCS), the crushing and heating method of HCP, and the curing method of the Rehydrated Cement Specimens (RCS). This research assessed the quality of recycled materials by using different techniques such as X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetry (TG), Scanning electron Microscopy (SEM), and X-ray Fluorescence (XRF). These recycled materials were thermally pretreated at different temperatures from 200°C to 1000°C. Additionally, the research investigated to what extent the thermally treated recycled cement could partially replace the OPC and if the new concrete produced would achieve the required mechanical properties. The mechanical properties were evaluated on the RCS, obtained by mixing the Dehydrated Cement Powder and Recycled Powder (DCP and DRP) with water (w/c = 0.6 and w/c = 0.45). The research used the compressive testing machine for compressive strength testing, and the three-point bending test was used to assess the flexural strength.Keywords: hydrated cement powder, dehydrated cement powder, recycled concrete powder, thermal treatment, reactivation, mechanical performance
Procedia PDF Downloads 1565661 Proprietary Blend Synthetic Rubber as Loss Circulation Material in Drilling Operation
Authors: Zatil Afifah Omar, Siti Nur Izati Azmi, Kathi Swaran, Navin Kumar
Abstract:
Lost circulation has always been one of the greatest problems faced by drilling companies during drilling operations due to excessive drilling Fluids losses. Loss of circulation leads to Huge cost and non-productive time. The objective of this study is to evaluate the sealing efficiency of a proprietary blend of synthetic rubber as loss circulation material in comparison with a conventional product such as calcium carbonate, graphite, cellulosic, and nutshells. Sand Bed Tester with a different proprietary blend of synthetic rubber compositions has been used to determine the effectiveness of the LCM in preventing drilling fluids losses in a lab scale. Test results show the proprietary blend of synthetic rubber have good bridging properties and sealing Off fractures of various sizes. The finish product is environmentally friendly with lower production lead time and lower production cost compared to current conventional loss circulation materials used in current drilling operations.Keywords: loss circulation materials, drilling operation, sealing efficiency, LCM
Procedia PDF Downloads 1825660 Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway
Authors: Abriak Yassine, Zri Abdeljalil, Benzerzour Mahfoud., Hadj Sadok Rachid, Abriak Nor-Edine
Abstract:
In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads.Keywords: cement, dredged, sediment, foundation layer, resistance
Procedia PDF Downloads 1015659 Determination of Thermal Conductivity of Plaster Tow Material and Kapok Plaster by Numerical Method: Influence of the Heat Exchange Coefficient in Transitional Regime
Authors: Traore Papa Touty
Abstract:
This article presents a numerical method for determining the thermal conductivity of local materials, kapok plaster and tow plaster. It consists of heating the front face of a wall made from these two materials and at the same time insulating its rear face. We simultaneously study the curves of the evolution of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face. Thermal conductivity is obtained when reaching a steady state when the evolution of the heat flux density and the temperature gradient no longer depend on time. The results showed that the theoretical value of thermal conductivity is obtained when the material has reached its equilibrium state. And the values obtained for different values of the convective exchange coefficients are appreciably equal to the experimental value.Keywords: thermal conductivity, numerical method, heat exchange coefficient, transitional regime
Procedia PDF Downloads 2195658 The Impact of Acoustic Performance on Neurodiverse Students in K-12 Learning Spaces
Authors: Michael Lekan-Kehinde, Abimbola Asojo, Bonnie Sanborn
Abstract:
Good acoustic performance has been identified as one of the critical Indoor Environmental Quality (IEQ) factors for student learning and development by the National Research Council. Childhood presents the opportunity for children to develop lifelong skills that will support them throughout their adult lives. Acoustic performance of a space has been identified as a factor that can impact language acquisition, concentration, information retention, and general comfort within the environment. Increasingly, students learn by communication between both teachers and fellow students, making speaking and listening crucial. Neurodiversity - while initially coined to describe individuals with autism spectrum disorder (ASD) - widely describes anyone with a different brain process. As the understanding from cognitive and neurosciences increases, the number of people identified as neurodiversity is nearly 30% of the population. This research looks at guidelines and standard for spaces with good acoustical quality and relates it with the experiences of students with autism spectrum disorder (ASD), their parents, teachers, and educators through a mixed methods approach, including selected case studies interviews, and mixed surveys. The information obtained from these sources is used to determine if selected materials, especially properties relating to sound absorption and reverberation reduction, are equally useful in small, medium sized, and large learning spaces and methodologically approaching. The results describe the potential impact of acoustics on Neurodiverse students, considering factors that determine the complexity of sound in relation to the auditory processing capabilities of ASD students. In conclusion, this research extends the knowledge of how materials selection influences the better development of acoustical environments for autism students.Keywords: acoustics, autism spectrum disorder (ASD), children, education, learning, learning spaces, materials, neurodiversity, sound
Procedia PDF Downloads 1075657 Strengths and Weaknesses of Tally, an LCA Tool for Comparative Analysis
Authors: Jacob Seddlemeyer, Tahar Messadi, Hongmei Gu, Mahboobeh Hemmati
Abstract:
The main purpose of this first tier of the study is to quantify and compare the embodied environmental impacts associated with alternative materials applied to Adohi Hall, a residence building at the University of Arkansas campus, Fayetteville, AR. This 200,000square foot building has5 stories builtwith mass timber and is compared to another scenario where the same edifice is built with a steel frame. Based on the defined goal and scope of the project, the materials respectivetothe respective to the two building options are compared in terms of Global Warming Potential (GWP), starting from cradle to the construction site, which includes the material manufacturing stage (raw material extract, process, supply, transport, and manufacture) plus transportation to the site (module A1-A4, based on standard EN 15804 definition). The consumedfossil fuels and emitted CO2 associated with the buildings are the major reason for the environmental impacts of climate change. In this study, GWP is primarily assessed to the exclusion of other environmental factors. The second tier of this work is to evaluate Tally’s performance in the decision-making process through the design phases, as well as determine its strengths and weaknesses. Tally is a Life Cycle Assessment (LCA) tool capable of conducting a cradle-to-grave analysis. As opposed to other software applications, Tally is specifically targeted at buildings LCA. As a peripheral application, this software tool is directly run within the core modeling application platform called Revit. This unique functionality causes Tally to stand out from other similar tools in the building sector LCA analysis. The results of this study also provide insights for making more environmentally efficient decisions in the building environment and help in the move forward to reduce Green House Gases (GHGs) emissions and GWP mitigation.Keywords: comparison, GWP, LCA, materials, tally
Procedia PDF Downloads 2275656 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques
Authors: Kishor T. Zingre, Seshadhri Srinivasan
Abstract:
Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates
Procedia PDF Downloads 1145655 The Applications of Wire Print in Composite Material Research and Fabrication Process
Authors: Hsu Yi-Chia, Hoy June-Hao
Abstract:
FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future.Keywords: parametric software, wire print, robotic arms fabrication, composite filament additive manufacturing
Procedia PDF Downloads 1325654 Assessment of Frying Material by Deep-Fat Frying Method
Authors: Brinda Sharma, Saakshi S. Sarpotdar
Abstract:
Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying
Procedia PDF Downloads 4305653 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water
Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.Keywords: Heavy metal recovery, cleaning water, phage display, nickel
Procedia PDF Downloads 995652 Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate
Authors: Amr Mohamed Bakry Ibrahim, Yingzhou Ni, Hao Cheng, Li Liang
Abstract:
Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries.Keywords: Mentha piperita oil, microcapsule, tuna oil, whey protein isolate
Procedia PDF Downloads 3525651 Evaluation of Capacity of Bed Planted with Macrophytes for Wastewater Treatment of Biskra City, Algeria
Authors: Mimeche Leila, Debabeche Mahmoud
Abstract:
It is question to study and to value the possibility of settling the process of purification by plants (constructed wetland) to treat the domestic waste water of Biskra, city in a semi-arid environment with grave problems of. According to the bibliography, the process of treatment by plants is considered as more advantageous than the classic techniques. It is the use of beds with macrophytes where the purification is made by the combined action of plants and micro-organisms in a filtering bed. The micro-organisms which are aerobic bacteria and\or anaerobic have for main function to degrade the polluting materials. Plants in the macrophytes beds have for function to serve as support in the development of bacteria and to favour also their development. In this study, we present a preliminary experimental analysis of the potentialities of treatment of some macrpohytes plants, implanted in basins filled of gravel. Analyses physico chemical and bacteriological of the waste water indicate a good elimination of the polluting materials, and put in evidence the purifier power of these plants, in association with bacteria. The obtained results seem to be interesting and encourage deepening the study for other types of plants in other conditions.Keywords: constructed wetlands, macrophytes, sewage treatment, wastewater
Procedia PDF Downloads 4015650 Characterization and Evaluation of LD Slag and Fly Ash Mixture for Their Possible Utilization in Different Sectors
Authors: Jagdeep Nayak, Biswajit Paul, Anup Gupta
Abstract:
Characterization of coal refuses to fly ash, and steel slag from steel industries have been performed to develop a mixture of both these materials to enhance strength properties of their utilization in other sectors like mine fill, construction work, etc. A large amount of Linz-Donawitz (LD) slag and fly ash waste are generated from steel and thermal power industries respectively. Management of these wastes is problematic, and their reutilization may provide a sustainable waste management option. LD slag and fly ash mixed in different proportions were tested to analyse the micro structural improvement and hardening rate of the matrix. Mixing of activators such as sodium hydroxide and potassium silicate with silica-alumina of LD slag-fly ash mixture, geopolymeric structure were found to be developed. The effect of geo-polymerization behaviour and subsequent structural rearrangement has been studied using compressibility; shear strength and permeability tests followed by micro-graphical analysis. Densification in the mixture was observed along with an improvement of geotechnical properties due to the addition of LD slag. Due to suitable strength characteristics of these two waste materials as mixture, it can be used in the various construction field or may be used as a filling material in mine voids.Keywords: LD slag, fly-ash, geopolymer, strength property, compressibility
Procedia PDF Downloads 3945649 Waterproofing Agent in Concrete for Tensile Improvement
Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan
Abstract:
In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.Keywords: high tensile concrete, waterproofing agent, concrete, rheology
Procedia PDF Downloads 3285648 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents
Authors: Uzaira Rafique, Kousar Parveen
Abstract:
The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic
Procedia PDF Downloads 1935647 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization
Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz
Abstract:
Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide
Procedia PDF Downloads 1765646 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties
Authors: Kumator Josiphiah Taku
Abstract:
Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage
Procedia PDF Downloads 1665645 The Effect of Ethnic and Boko Haram Insurgency in the Economic Development of Cultural Heritage and Tourism Industries in Nigeria
Authors: Chinwe Juliana Abara, Dayo Keshi
Abstract:
Through cultural heritage materials, nations witness significant boom in the world of art and tourism as well as attract foreign investors and tourists to the benefit of the regions and countries where they are located. There are notable heritage sites which record visits by tourists in their thousands annually. According to UNESCO the cultural heritage reflects the life of the community, its history and its identity. Its preservation helps to rebuild broken communities, re-establish their identities, and link their past with their present and future. During any form of conflict or war, a lot happen. People die, houses destroyed and every other thing in the society suffers. Wars and conflicts in various countries have claimed antiquities, heritage materials, contemporary Arts, Galleries, Museums, Archives and very important Monuments and Heritage sites. My Paper deals with the effects of insurgencies and conflicts on cultural heritage and tourism industries in Nigeria and how they can be protected and restored so as to yield the desirable economic gains. Preceding from the premise that conflict of any type puts our cultural heritage at risk; this paper also explores the practical challenges and opportunities available to us in the face of incessant ethnic and Boko Haram (western education is abomination) insurgents and their wanton destruction of lives and properties. There will be a review of relevant literature and documents on the effects of violence on heritage materials and tourism industries in Nigeria particularly and other parts of the world in generally .My paper also highlights the activities the National Council for Arts and Culture as well as other Cultural Agencies in Nigeria have employed to sensitize the stakeholders, the youth, the elderly, and the community at large on the need for peaceful co-existence so as to collectively strive to safeguard and secure our cultural heritage in the face of all these challenges for posterity and desirable economic gains.Keywords: cultural heritage, conflict, tourism, insurgency, challenges
Procedia PDF Downloads 3955644 Structural and Phase Transformations of Pure and Silica Treated Nanofibrous Al₂O₃
Authors: T. H. N. Nguyen, A. Khodan, M. Amamra, J-V. Vignes, A. Kanaev
Abstract:
The ultraporous nanofibrous alumina (NOA, Al2O3·nH2O) was synthesized by oxidation of laminated aluminium plates through a liquid mercury-silver layer in a humid atmosphere ~80% at 25°C. The material has an extremely high purity (99%), porosity (90%) and specific area (300 m2/g). The subsequent annealing of raw NOA permits obtaining pure transition phase (γ and θ) nanostructured materials. In this combination, we report on chemical, structural and phase transformations of pure and modified NOA by an impregnation of trimethylethoxysilane (TMES) and tetraethoxysilane (TEOS) during thermal annealing in the temperature range between 20 and 1650°C. The mass density, specific area, average diameter and specific area are analysed. The 3D model of pure NOA monoliths and silica modified NOA is proposed, which successfully describes the evolution of specific area, mass density and phase transformations. Activation energies of the mass transport in two regimes of surface diffusion and bulk sintering were obtained based on this model. We conclude about a common origin of modifications of the NOA morphology, chemical composition and phase transition.Keywords: nanostructured materials, alumina (Al₂O₃), morphology, phase transitions
Procedia PDF Downloads 3785643 Microwave Assisted Synthesis of Ag/ZnO Sub-Microparticles Deposited on Various Cellulose Surfaces
Authors: Lukas Munster, Pavel Bazant, Ivo Kuritka
Abstract:
Zinc oxide sub-micro particles and metallic silver nano particles (Ag/ZnO) were deposited on micro crystalline cellulose surface by a fast, simple and environmentally friendly one-pot microwave assisted solvo thermal synthesis in an open vessel system equipped with an external reflux cooler. In order to increase the interaction between the surface of cellulose and the precipitated Ag/ZnO particles, oxidized form of cellulose (cellulose dialdehyde, DAC) prepared by periodate oxidation of micro crystalline cellulose was added to the reaction mixture of Ag/ZnO particle precursors and untreated micro crystalline cellulose. The structure and morphology of prepared hybrid powder materials were analysed by X-ray diffraction (XRD), energy dispersive analysis (EDX), scanning electron microscopy (SEM) and nitrogen absorption method (BET). Microscopic analysis of the prepared materials treated by ultra-sonication showed that Ag/ZnO particles deposited on the cellulose/DAC sample exhibit increased adhesion to the surface of the cellulose substrate which can be explained by the DAC adhesive effect in comparison with the material prepared without DAC addition.Keywords: microcrystalline cellulose, microwave synthesis, silver nanoparticles, zinc oxide sub-microparticles, cellulose dialdehyde
Procedia PDF Downloads 4785642 Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy
Authors: Suresh Vanguri, Suresh Palla, Prasad G., Ramaswamy V., Kalyani K. V., Chaturvedi S. K., Mohapatra B. N., Sunder Rao TBVN
Abstract:
The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics.Keywords: chrome sludge, leaching, mineralogy, non-carbonate materials
Procedia PDF Downloads 2195641 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys
Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho
Abstract:
Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery
Procedia PDF Downloads 5335640 Comparison of Steel and Composite Analysis of a Multi-Storey Building
Authors: Çiğdem Avcı Karataş
Abstract:
Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.Keywords: composite analysis, earthquake, steel, multi-storey building
Procedia PDF Downloads 572