Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2580

Search results for: drilling operation

2580 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study

Authors: Hamidoddin Yousife

Abstract:

Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.

Keywords: drlling, cost, optimization, parameters

Procedia PDF Downloads 89
2579 Proprietary Blend Synthetic Rubber as Loss Circulation Material in Drilling Operation

Authors: Zatil Afifah Omar, Siti Nur Izati Azmi, Kathi Swaran, Navin Kumar

Abstract:

Lost circulation has always been one of the greatest problems faced by drilling companies during drilling operations due to excessive drilling Fluids losses. Loss of circulation leads to Huge cost and non-productive time. The objective of this study is to evaluate the sealing efficiency of a proprietary blend of synthetic rubber as loss circulation material in comparison with a conventional product such as calcium carbonate, graphite, cellulosic, and nutshells. Sand Bed Tester with a different proprietary blend of synthetic rubber compositions has been used to determine the effectiveness of the LCM in preventing drilling fluids losses in a lab scale. Test results show the proprietary blend of synthetic rubber have good bridging properties and sealing Off fractures of various sizes. The finish product is environmentally friendly with lower production lead time and lower production cost compared to current conventional loss circulation materials used in current drilling operations.

Keywords: loss circulation materials, drilling operation, sealing efficiency, LCM

Procedia PDF Downloads 88
2578 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite

Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali

Abstract:

In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.

Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force

Procedia PDF Downloads 345
2577 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 140
2576 LWD Acquisition of Caliper and Drilling Mechanics in a Geothermal Well, A Case Study in Sorik Marapi Field – Indonesia

Authors: Vinda B. Manurung, Laila Warkhaida, David Hutabarat, Sentanu Wisnuwardhana, Christovik Simatupang, Dhani Sanjaya, Ashadi, Redha B. Putra, Kiki Yustendi

Abstract:

The geothermal drilling environment presents many obstacles that have limited the use of directional drilling and logging-while-drilling (LWD) technologies, such as borehole washout, mud losses, severe vibration, and high temperature. The case study presented in this paper demonstrates a practice to enhance data logging in geothermal drilling by deploying advanced telemetry and LWD technologies. This operation is aiming continuous improvement in geothermal drilling operations. The case study covers a 12.25-in. hole section of well XX-05 in Pad XX of the Sorik Marapi Geothermal Field. LWD string consists of electromagnetic (EM) telemetry, pressure while drilling (PWD), vibration (DDSr), and acoustic calliper (ACAL). Through this tool configuration, the operator acquired drilling mechanics and caliper logs in real-time and recorded mode, enabling effective monitoring of wellbore stability. Throughout the real-time acquisition, EM-PPM telemetry had provided a three times faster data rate to the surface unit. With the integration of Caliper data and Drilling mechanics data (vibration and ECD -equivalent circulating density), the borehole conditions were more visible to the directional driller, allowing for better control of drilling parameters to minimize vibration and achieve optimum hole cleaning in washed-out or tight formation sequences. After reaching well TD, the recorded data from the caliper sensor indicated an average of 8.6% washout for the entire 12.25-in. interval. Washout intervals were compared with loss occurrence, showing potential for the caliper to be used as an indirect indicator of fractured intervals and validating fault trend prognosis. This LWD case study has given added value in geothermal borehole characterization for both drilling operation and subsurface. Identified challenges while running LWD in this geothermal environment need to be addressed for future improvements, such as the effect of tool eccentricity and the impact of vibration. A perusal of both real-time and recorded drilling mechanics and caliper data has opened various possibilities for maximizing sensor usage in future wells.

Keywords: geothermal drilling, geothermal formation, geothermal technologies, logging-while-drilling, vibration, caliper, case study

Procedia PDF Downloads 24
2575 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 255
2574 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 77
2573 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

Authors: L. Roseiro, C. Veiga, V. Maranha, A. Neto, N. Laraqi, A. Baïri, N. Alilat

Abstract:

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Keywords: bone necrosis, bone drilling, thermography, surgery

Procedia PDF Downloads 479
2572 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment

Authors: Pranjal Srivastava, Piyali Sengupta

Abstract:

The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.

Keywords: drilling riser, marine, analytical model, fragility

Procedia PDF Downloads 75
2571 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: drilling, resonant vibration, robot arm, control

Procedia PDF Downloads 222
2570 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling

Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun

Abstract:

Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.

Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model

Procedia PDF Downloads 198
2569 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction

Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour

Abstract:

In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.

Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration

Procedia PDF Downloads 85
2568 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool

Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt

Abstract:

Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.

Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength

Procedia PDF Downloads 67
2567 Evaluation of Hard Rocks Destruction Effectiveness at Drilling

Authors: Ekaterina Leusheva, Valentin Morenov

Abstract:

Well drilling in hard rocks is coupled with high energy demands which negates the speed of the process and thus reduces overall effectiveness. Aim of this project is to develop the technique of experimental research, which would allow to select optimal washing fluid composition while adding special hardness reducing detergent reagents. Based on the analysis of existing references and conducted experiments, technique dealing with quantitative evaluation of washing fluid weakening influence on drilled rocks was developed, which considers laboratory determination of three mud properties (density, surface tension, specific electrical resistance) and three rock properties (ultimate stress, dynamic strength, micro-hardness). Developed technique can be used in the well drilling technologies and particularly while creating new compositions of drilling muds for increased destruction effectiveness of hard rocks. It can be concluded that given technique introduces coefficient of hard rocks destruction effectiveness that allows quantitative evaluation of different drilling muds on the drilling process to be taken. Correct choice of drilling mud composition with hardness reducing detergent reagents will increase drilling penetration rate and drill meterage per bit.

Keywords: detergent reagents, drilling mud, drilling process stimulation, hard rocks

Procedia PDF Downloads 483
2566 The Effect of Chisel Edge on Drilling-Induced Delamination

Authors: Parnian Kianfar, Navid Zarif Karimi, Giangiacomo Minak

Abstract:

Drilling is one of the most important machining operations as numerous holes must be drilled in order to install mechanical fasteners for assembly in composite structures. Delamination is a major problem associated with the drilling of fiber reinforced composite materials, which degrades the mechanical properties of these materials. In drilling, delamination is initiated when the drilling force exceeds a threshold value, particularly at the critical entry and exit locations of the drill bit. The chisel edge of twist drill is a major contributor to the thrust force which is the primary cause of delamination. The main objective of this paper is to study the effect of chisel edge and pilot hole on thrust force and delamination during drilling of glass fiber reinforced composites. For this purpose, two sets of experiments, with and without pilot hole, were conducted with different drilling conditions. The results show a great reduction in the thrust force when a pilot hole is present which removes the chisel edge contribution.

Keywords: composites, chisel edge, drilling, delamination

Procedia PDF Downloads 357
2565 Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study

Authors: Nikoo Soleimani

Abstract:

Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction.

Keywords: torsional ultrasonic assisted drilling, torque, bone drilling, rotational speed, feed rate

Procedia PDF Downloads 83
2564 Performance of Constant Load Feed Machining for Robotic Drilling

Authors: Youji Miyake

Abstract:

In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.

Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling

Procedia PDF Downloads 122
2563 Experiment Study on the Influence of Tool Materials on the Drilling of Thick Stacked Plate of 2219 Aluminum Alloy

Authors: G. H. Li, M. Liu, H. J. Qi, Q. Zhu, W. Z. He

Abstract:

The drilling and riveting processes are widely used in the assembly of carrier rocket, which makes the efficiency and quality of drilling become the important factor affecting the assembly process. According to the problem existing in the drilling of thick stacked plate (thickness larger than 10mm) of carrier rocket, such as drill break, large noise and burr etc., experimental study of the influence of tool material on the drilling was carried out. The cutting force was measured by a piezoelectric dynamometer, the aperture was measured with an outline projector, and the burr is observed and measured by a digital stereo microscope. Through the measurement, the effects of tool material on the drilling were analyzed from the aspects of drilling force, diameter, and burr. The results show that, compared with carbide drill and coated carbide one, the drilling force of high speed steel is larger. But, the application of high speed steel also has some advantages, e.g. a higher number of hole can be obtained, the height of burr is small, the exit is smooth and the slim burr is less, and the tool experiences wear but not fracture. Therefore, the high speed steel tool is suitable for the drilling of thick stacked plate of 2219 Aluminum alloy.

Keywords: 2219 aluminum alloy, thick stacked plate, drilling, tool material

Procedia PDF Downloads 166
2562 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 300
2561 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling

Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade

Abstract:

Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.

Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis

Procedia PDF Downloads 242
2560 Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites

Authors: Vimanyu Chadha, Ranganath M. Singari

Abstract:

Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates.

Keywords: analysis of variance, delamination, design optimization, drilling, glass fiber reinforced plastic composites, Taguchi method

Procedia PDF Downloads 184
2559 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids

Authors: Devesh Motwani, Amey Kashyap

Abstract:

Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.

Keywords: economics, guargum, viscofier, CMC, thermal stability

Procedia PDF Downloads 364
2558 Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time

Authors: Talal Al-Bazali

Abstract:

Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper.

Keywords: air drilling, rate of penetration, temperature, rotary speed

Procedia PDF Downloads 219
2557 Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites

Authors: Navid Zarif Karimi, Giangiacomo Minak, Parnian Kianfar

Abstract:

Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength.

Keywords: composite material, delamination, drilling, residual compressive strength

Procedia PDF Downloads 385
2556 Plane of Equal Settlement above HDD’s Borehole before Operational Condition

Authors: Shokoufeh Sadeghifard

Abstract:

This study is a review of the nature of soil arching that develops in the upper layer of soil during drilling processes before pulling product pipe inside the hole. This study is based on the results of some parametric studies which are investigating the behavior of drained sandy soil above HDD borehole using Plaxis finite element solution. The influence of drilling mud injection in these series of analyses has been ignored. However, a suitable drilling mud pressure helps to achieve stable arch when the height of soil cover over the drilling borehole is not enough. In this study, the soil response to the formation of a HDD borehole is compared to arching theory developed by Terzaghi (1943). It is found that Terzaghi’s approach is capable of describing all of the behaviour seen when a stable arch forms. According to the numerical results, a suitable safe depth of 4D, D is borehole diameter, is suggested for typical range of HDD borehole in sandy soil.

Keywords: HDD, Plaxis, finite element, arching, settlement, drilling

Procedia PDF Downloads 292
2555 Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects

Authors: Husam Mohammed Saleh Alziyadi

Abstract:

The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges.

Keywords: nanotechnology, WBM, Drilling Fluid, nanofluids

Procedia PDF Downloads 12
2554 A Case Study of Kick Control in Tough Potohar Region

Authors: Iftikhar Raza

Abstract:

Well control is the management of the hazardous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling. Oil well control is one of the most important aspects of drilling operations. Improper handling of kicks in oil well control can result in blowouts with very grave consequences, including the loss of valuable resources. Even though the cost of a blowout (as a result of improper/no oil well control) can easily reach several millions of US dollars, the monetary loss is not as serious as the other damages that can occur: irreparable damage to the environment, waste of valuable resources, ruined equipment, and most importantly, the safety and lives of personnel on the drilling rig. In this paper, case study of a well is discussed with field data showing the properties of the well. The whole procedure of controlling this well is illustrated in this which may be helpful for professional dealing with such kind of problems.

Keywords: kick control, kill sheet, oil well, gas drilling

Procedia PDF Downloads 428
2553 Simulating Drilling Using a CAD System

Authors: Panagiotis Kyratsis, Konstantinos Kakoulis

Abstract:

Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.

Keywords: CAD, application programming interface, response surface methodology, drilling, RSM

Procedia PDF Downloads 394
2552 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method

Authors: Marzieh Zarei

Abstract:

Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.

Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling

Procedia PDF Downloads 50
2551 Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness

Authors: Abbas Hadj Abbas, Hacini Massaoud, Aiad Lahcen

Abstract:

In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study.

Keywords: wastes treatment, the oil pollution, the norms, wastes drilling

Procedia PDF Downloads 211