Search results for: material composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8795

Search results for: material composition

7565 Characteristic Composition and Sensory Contributions of Acidic Aroma in Mainstream Cigarette Smoke of Cherry-Red Tobacco

Authors: Tian Yangyang, Xu Zihe, Lu Junping, Yang Jizhou, Xu Yiqun, Wang Jiansong, Chen Chao, Yang Mengmeng, Guo Jianhua, Mu Wenjun, Wang Guiyao, Xue Chaoqun, Liang Taibo, Hu Liwei

Abstract:

Cherry-red tobacco is receiving constant attention from cigarette enterprises because of its special flavor. This study aims to explore the material basis for the formation of the characteristic flavor of cherry-red tobacco and to clarify the distribution characteristics of the acidic aroma component groups in its mainstream smoke. In order to reach the aims of current study, this study employs GC/MS to examine the differences of distribution characteristics in particulate matter of mainstream cigarette smoke between cherry-red and common tobacco, meanwhile the aroma activity values (OVA) was used to compare the contribution of acidic aroma of cherry-red tobacco. The results showed that: 1) Isovaleric acid, acetic acid and butyric acid were the key acidic components in the mainstream smoke of the samples, followed by 3-methylvaleric acid, 4-methylvaleric acid and n-valeric acid. 2)Analysis of the release of these key sour fragrance components showed that the acidic aroma of "YUN 85" mainstream smoke was stronger than the leaf group, cherry-red tobacco was the weakest. In addition, aging had the effect of reducing the acidic components of cherry-red tobacco and the addition of cherry-red tobacco had little effect on the acidic components of the original leaf group. 3) For 14 acidic aroma(OAV>1) in smoke of cherry-red tobacco, 3-methylpentanoic acid, 4-methylpentanoic acid, pentanoic acid, and isovaleric acid were very prominent in contributing to acidic aroma, while pyruvic acid, 2-methylbutyric acid, hydrogenated acid, and propionic acid were less contribution.

Keywords: cherry-red tobacco, acidic aroma, GC/MS, mainstream cigarette smoke, odor activity value

Procedia PDF Downloads 130
7564 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves

Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela

Abstract:

In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.

Keywords: browse plants, chemical composition, harvesting heights, phenolics

Procedia PDF Downloads 141
7563 Evaluation of Lead II Adsorption in Porous Structures Manufactured from Chitosan, Hydroxiapatite and Moringa

Authors: Mishell Vaca, Gema Gonzales, Francisco Quiroz

Abstract:

Heavy metals present in wastewater constitute a danger for living beings in general. In Ecuador, one of the sources of contamination is artisanal mining whose liquid effluents, in many of the cases without prior treatment, are discharged to the surrounding rivers. Lead is a pollutant that accumulated in the body causes severe health effects. Nowadays, there are several treatment methods to reduce this pollutant. The aim of this study is to reduce the concentration of lead II through the use of a porous material formed by a matrix of chitosan, in which hydroxyapatite and moringa particles smaller than 53 um are suspended. These materials are not toxic to the environment, and each one adsorbs metals independently, so the synergic effect between them will be evaluated. The synthesized material has a cylindrical design that allows increasing the surface area, which is expected to have greater capacity of adsorption. It has been determined that the best conditions for its preparation are to dissolve the chitosan in 1% v/v acetic acid with a pH = 5, then the hydroxyapatite and moringa are added to the mixture with magnetic stirring. This suspension is frozen, lyophilized and finally dried. In order to evaluate the performance of the synthesized material, synthetic solutions of lead are prepared at different concentrations, and the percentage of removal is evaluated. It is expected to have an effluent whose lead content is less than 0.2 mg/L which is the limit maximum allowable according to established environmental standards.

Keywords: adsorption, chitosan, hydroxyapatite, lead, moringa, water treatment

Procedia PDF Downloads 158
7562 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 83
7561 Study of Natural Radioactive and Radiation Hazard Index of Soil from Sembrong Catchment Area, Johor, Malaysia

Authors: M. I. A. Adziz, J. Sharib Sarip, M. T. Ishak, D. N. A. Tugi

Abstract:

Radiation exposure to humans and the environment is caused by natural radioactive material sources. Given that exposure to people and communities can occur through several pathways, it is necessary to pay attention to the increase in naturally radioactive material, particularly in the soil. Continuous research and monitoring on the distribution and determination of these natural radionuclides' activity as a guide and reference are beneficial, especially in an accidental exposure. Surface soil/sediment samples from several locations identified around the Sembrong catchment area were taken for the study. After 30 days of secular equilibrium with their daughters, the activity concentrations of the naturally occurring radioactive material (NORM) members, i.e. ²²⁶Ra, ²²⁸Ra, ²³⁸U, ²³²Th, and ⁴⁰K, were measured using high purity germanium (HPGe) gamma spectrometer. The results obtained showed that the radioactivity concentration of ²³⁸U ranged between 17.13 - 30.13 Bq/kg, ²³²Th ranged between 22.90 - 40.05 Bq/kg, ²²⁶Ra ranged between 19.19 - 32.10 Bq/kg, ²²⁸Ra ranged between 21.08 - 39.11 Bq/kg and ⁴⁰K ranged between 9.22 - 51.07 Bq/kg with average values of 20.98 Bq/kg, 27.39 Bq/kg, 23.55 Bq/kg, 26.93 Bq/kg and 23.55 Bq/kg respectively. The values obtained from this study were low or equivalent to previously reported in previous studies. It was also found that the mean/mean values obtained for the four parameters of the Radiation Hazard Index, namely radium equivalent activity (Raeq), external dose rate (D), annual effective dose and external hazard index (Hₑₓ), were 65.40 Bq/kg, 29.33 nGy/h, 19.18 ¹⁰⁻⁶Sv and 0.19 respectively. These obtained values are low compared to the world average values and the values of globally applied standards. Comparison with previous studies (dry season) also found that the values for all four parameters were low and equivalent. This indicates the level of radiation hazard in the area around the study is safe for the public.

Keywords: catchment area, gamma spectrometry, naturally occurring radioactive material (NORM), soil

Procedia PDF Downloads 94
7560 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 403
7559 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth

Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari

Abstract:

The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.

Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus

Procedia PDF Downloads 113
7558 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion

Authors: Lingju Wu, Hao Hua

Abstract:

This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.

Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design

Procedia PDF Downloads 109
7557 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 80
7556 Patient Understanding of Health Information: Implications for Organizational Health Literacy in Germany

Authors: Florian Tille, Heide Weishaar, Bernhard Gibis, Susanne Schnitzer

Abstract:

Introduction: The quality of patient-doctor communication and of written health information is central to organizational health literacy (HL). Whether patients understand their doctors’ explanations and textual material on health, however, is understudied. This study identifies the overall levels of patient understanding of health information and its associations with patients’ social characteristics in outpatient health care in Germany. Materials & Methods: This analysis draws on data collected via a 2017 national health survey with a sample of 6,105 adults. Quality of communication was measured for consultations with general practitioners (GPs) and specialists (SPs) via the Ask Me 3 program questions, and through a question on written health material. Correlations with social characteristics were explored employing bivariate and multivariate logistic regression analyses. Results: Over 90% of all respondents reported that they had understood their doctors’ explanations during the last consultation. Failed understanding was strongly correlated with patients’ very poor health (Odds Ratio [OR]: 5.19; 95% confidence interval [CI]: 2.23–12.10; ref. excellent/very good health), current health problem (OR: 6.54, CI: 1.70–25.12; ref. preventive examination) and age 65 years and above (OR: 2.97, CI: 1.10–8.00; ref. 18 to 34 years). Fewer patients answered they understood written material well (86.7% for las visit at GP, 89.7% at SP). Understanding written material poorly was highly associated with basic education (OR: 4.20, CI: 2.76–6.39; ref. higher education) and 65 years old and above (OR: 2.66, CI: 1.43–4.96). Discussion: Overall ratings of oral patient-doctor communication and written communication of health information are high. Yet, a considerable share of patients reports not-understanding their doctors and poor understanding of the written health-related material. Interventions that can contribute to improving organizational HL in outpatient care in Germany include HL training for doctors, reducing system barriers to easily-accessible health information for patients and combining oral and written health communication means. Conclusion: This work adds to the study of organizational HL in Germany. To increase patient understanding of health-relevant information and thereby possibly reduce health disparities, meeting the communication needs especially of persons in different age groups, with basic education and in very poor health is suggested.

Keywords: health survey, organizational health literacy, patient-doctor communication, social characteristics, outpatient care, Ask Me 3

Procedia PDF Downloads 163
7555 Phytoplankton Diversity and Abundance in Burullus Lagoon, Southern Mediterranean Coast, Egypt

Authors: Shymaa S. Zaher, Hesham M. Abd El-Fatah, Dina M. Ali

Abstract:

Burullus Lagoon is the second largest lake, along the Mediterranean seashore. It exposed to over nutrient enrichment from fish farming and agricultural drainage wastes. This study assesses the present status phytoplankton response to different flow events, including domestic, agricultural, industrial, and fish farms discharge in the three main sectors of Burullus Lagoon, to focus on the influence of environmental variables on phytoplankton species composition inhabiting the Lagoon. Twelve sites representing the eastern, central, and western basin were selected during winter and summer 2018. Among the most abundant group, Chlorophyceae came in the first rank by 37.9% of the total phytoplankton densities, Bacillariophyceae (29.31%), Cyanophyceae (20.7%), Euglenophyceae (8.63%) and Dinophyceae (3.4%). Cyclotella menenghiana was the most abundant diatoms, while Scenedesmus quadricauda, S. acuminatus, and S. bijuga were highly recorded nearby the drains (in the middle sector). Phytoplankton in Burullus Lagoon attained the lowest values during the winter season and the highest ones during the summer season. The total count of phytoplankton in the middle and western basin of the lake was higher than that of the eastern part. Excessive use of chemical fertilizers, pesticides, and washing out of nutrients loaded to the drainage water, leading to a significant pronounced decrease in community composition and standing crop of phytoplankton in Burullus Lake from year to year, hold the danger of shifting the lagoon ecosystem.

Keywords: Burullus Lagoon, environmental variables, phytoplankton, water pollution

Procedia PDF Downloads 116
7554 Analysis of Pathogen Populations Occurring in Oilseed Rape Using DNA Sequencing Techniques

Authors: Elizabeth Starzycka-Korbas, Michal Starzycki, Wojciech Rybinski, Mirosława Dabert

Abstract:

For a few years, the populations of pathogenic fungi occurring in winter oilseed rape in Malyszyn were analyzed. Brassica napus L. in Poland and in the world is a source of energy for both the men (oil), and animals, as post-extraction middling, as well as a motor fuel (oil, biofuel) therefore studies of this type are very important. The species composition of pathogenic fungi can be an indicator of seed yield. The occurrence of oilseed rape pathogens during several years were analyzed using the sequencing method DNA ITS. The results were compared in the gene bank using the program NCBI / BLAST. In field conditions before harvest of oilseed rape presence of pathogens infesting B. napus has been assessed. For example, in 2015, 150 samples have been isolated and applied to PDA medium for the identification of belonging species. From all population has been selected mycelium of 83 isolates which were sequenced. Others (67 isolates) were pathogenic fungi of the genus Alternaria which are easily to recognize. The population of pathogenic species on oilseed rape have been identified after analyzing the DNA ITS and include: Leptosphaeria sp. 38 (L. maculans 25, L. biglobosa 13), Alternaria sp. 29, Fusarium sp. 3, Sclerotinia sclerotiorum 7, heterogeneous 6, total of 83 isolates. The genus Alternaria sp. fungi wear the largest share of B. napus pathogens in particular years. Another dangerous species for oilseed rape was Leptosphaeria sp. Populations of pathogens in each year were different. The number of pathogens occurring in the field and their composition is very important for breeders and farmers because of the possible selection of the most resistant genotypes for sowing in the next growing season.

Keywords: B. napus, DNA ITS Sequencing, pathogenic fungi, population

Procedia PDF Downloads 283
7553 Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material

Authors: A. Benhamena, L. Aminallah, A. Aid, M. Benguediab, A. Amrouche

Abstract:

The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results.

Keywords: aluminum 2024-T3 alloy, single-lap adhesive joints, Interface stress distributions, material nonlinear analysis, adhesive, bending moment, finite element method

Procedia PDF Downloads 567
7552 Conservation Status of a Lowland Tropical Forest in South-West, Nigeria

Authors: Lucky Dartsa Wakawa, Friday Nwabueze Ogana, Temitope Elizabeth Adeniyi

Abstract:

Timely and reliable information on the status of a forest is essential for assessing the extent of regeneration and degradation. However, when such information is lacking effective forest management practices becomes impossible. Therefore, this study assessed the tree species composition, richness, diversity, structure of Oluwa forest reserve with the view of ascertaining it conservation status. A systematic line transect was used in the laying of eight (8) temporary sample plots (TSPs) of size 50m x 50m. Trees with Dbh ≥ 10cm in the selected plots were enumerated, identified and measured. The results indicate that 535 individual trees were enumerated cutting across 26 families and 58 species. The family Sterculiaceae recorded the highest number of species (10) and occurrence (112) representing 17.2% and 20.93% respectively. Celtis zenkeri is the species with the highest number of occurrence of tree per hectare and importance value index (IVI) of 59 and 53.81 respectively. The reserve has the Margalef's index of species richness, Shannon-Weiner diversity Index (H') and Pielou's Species Evenness Index (EH) of 9.07, 3.43 and 0.84 respectively. The forest has a mean Dbh (cm), mean height (m), total basal area/ha (m2) and total volume/ha (m3) of 24.7, 16.9, 36.63 and 602.09 respectively. The important tropical tree species identified includes Diospyros crassiflora Milicia excels, Mansonia altisima, Triplochiton scleroxylon. Despite the level of exploitation in the forest, the forest seems to be resilience. Given the right attention, it could regenerate and replenish to save some of the original species composition of the reserve.

Keywords: forest conservation, forest structure, Lowland tropical forest, South-west Nigeria

Procedia PDF Downloads 338
7551 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo

Abstract:

Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 165
7550 Contribution in Fatigue Life Prediction of Composite Material

Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab

Abstract:

The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.

Keywords: fatigue, damage acumulation, composite, evolution

Procedia PDF Downloads 496
7549 Valorisation of Food Waste Residue into Sustainable Bioproducts

Authors: Krishmali N. Ekanayake, Brendan J. Holland, Colin J. Barrow, Rick Wood

Abstract:

Globally, more than one-third of all food produced is lost or wasted, equating to 1.3 billion tonnes per year. Around 31.2 million tonnes of food waste are generated across the production, supply, and consumption chain in Australia. Generally, the food waste management processes adopt environmental-friendly and more sustainable approaches such as composting, anerobic digestion and energy implemented technologies. However, unavoidable, and non-recyclable food waste ends up as landfilling and incineration that involve many undesirable impacts and challenges on the environment. A biorefinery approach contributes to a waste-minimising circular economy by converting food and other organic biomass waste into valuable outputs, including feeds, nutrition, fertilisers, and biomaterials. As a solution, Green Eco Technologies has developed a food waste treatment process using WasteMaster system. The system uses charged oxygen and moderate temperatures to convert food waste, without bacteria, additives, or water, into a virtually odour-free, much reduced quantity of reusable residual material. In the context of a biorefinery, the WasteMaster dries and mills food waste into a form suitable for storage or downstream extraction/separation/concentration to create products. The focus of the study is to determine the nutritional composition of WasteMaster processed residue to potential develop aquafeed ingredients. The global aquafeed industry is projected to reach a high value market in future, which has shown high demand for the aquafeed products. Therefore, food waste can be utilized for aquaculture feed development by reducing landfill. This framework will lessen the requirement of raw crops cultivation for aquafeed development and reduce the aquaculture footprint. In the present study, the nutritional elements of processed residue are consistent with the input food waste type, which has shown that the WasteMaster is not affecting the expected nutritional distribution. The macronutrient retention values of protein, lipid, and nitrogen free extract (NFE) are detected >85%, >80%, and >95% respectively. The sensitive food components including omega 3 and omega 6 fatty acids, amino acids, and phenolic compounds have been found intact in each residue material. Preliminary analysis suggests a price comparability with current aquafeed ingredient cost making the economic feasibility. The results suggest high potentiality of aquafeed development as 5 to 10% of the ingredients to replace/partially substitute other less sustainable ingredients across biorefinery setting. Our aim is to improve the sustainability of aquaculture and reduce the environmental impacts of food waste.

Keywords: biorefinery, ffood waste residue, input, wasteMaster

Procedia PDF Downloads 61
7548 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 114
7547 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester

Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar

Abstract:

Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.

Keywords: Defects, Forming, Impact, Induced properties, Textiles

Procedia PDF Downloads 137
7546 A Review on Valorisation of Chicken Feathers: Current Status and Future Prospects

Authors: Tamrat Tesfaye, Bruce Sithole, Deresh Ramjugernath

Abstract:

Worldwide, the poultry–processing industry generates large quantities of feather by-products that amount to 40 billion kilograms annually. The feathers are considered wastes although small amounts are often processed into valuable products such as feather meal and fertilizers. The remaining waste is disposed of by incineration or by burial in controlled landfills. Improper disposal of these biological wastes contributes to environmental damage and transmission of diseases. Economic pressures, environmental pressures, increasing interest in using renewable and sustainable raw materials, and the need to decrease reliance on non-renewable petroleum resources behove the industry to find better ways of dealing with waste feathers. A closer look at the structure and composition of feathers shows that the whole part of a chicken feather (rachis and barb) can be used as a source of a pure structural protein called keratin which can be exploited for conversion into a number of high-value bio products. Additionally, a number of technologies can be used to convert other biological components of feathers into high value added products. Thus, conversion of the waste into valuable products can make feathers an attractive raw material for the production of bio products. In this review, possible applications of chicken feathers in a variety of technologies and products are discussed. Thus, using waste feathers as a valuable resource can help the poultry industry to dispose of the waste feathers in an environmentally sustainable manner that also generates extra income for the industry. Their valorisation can result in their sustainable conversion into high-value materials and products on the proviso of existence or development of cost-effective technologies for converting this waste into the useful products.

Keywords: biodegradable product, keratin, poultry waste, feathers, valorisation

Procedia PDF Downloads 293
7545 Borassus aethiopum Mart Mature Fruits Macro-Composition, Drying Temperature Effect on Its Pulp Protein, Fat, Sugars, Metabolizable Energy, and Fatty Acids Profile

Authors: Tagouelbe Tiho, Amissa Augustin Adima, Yao Casimir Brou, Nabayo Traore, Gouha Firmin Kouassi, Thierry Roland Kouame, Maryline Kouba

Abstract:

The work aimed to study Borassus aethiopum Mart (B.a) dried pulp nutritional value for its incorporation in human and poultry diets. Firstly, the mature fruit macro-composition was assessed. Secondly, the pulp was dried at 40, 50, 60, 70, and 80ᵒC. Thereafter, the analysis was performed for fat, protein, total sugars, Ca, P, Mg, and fatty acid profile monitoring. As a result, the fruits weighed 1,591.35, delivered 516.73, and 677.82 grams of pulp and seeds, respectively. Mainly, increasing heat adversely affected the outputs. Consequently, the fat results were 14.12, 12.97, 8.93, 8.89ᶜ, and 5.56%; protein contents were 11.64, 10.15, 8.97, 8.84, and 8.42%; total sugar deliveries were 6.28, 6.05, 5.26, 5.02, and 4.76% (P < 0.01). Thereafter, the metabolizable energies were 3,785.22; 3,834.28; 3,616.62; 3,667.03; and 3,608.33 kcal/kg (DM). Additionally, Calcium (Ca) contents were 0.51, 0.55, 0.69, 0.77, and 0.81%, while phosphorus (P) mean was 0.17%, and the differences were not significant (P < 0.01). So, the Ca/P ratios were 2.79, 3.04, 4.10, 4.71, and 4.95. Finally, fatty acids (FA) assessments revealed 22.33 saturated (SFA), 77.67 unsaturated (UFA), within which 67.59% were monounsaturated (MUFA). Interestingly, the rising heat depressed n-6/n-3 ratios that were 1.1, 1.1, 0.45 and 0.38, respectively at 40, 50, 70 and 80ᵒC. In short, drying did not only enhance the product shelf life but it also improved the nutritional value. Thus, B.a mature fruit pulps dried at 70ᵒC are good functional foods, with more than 66% MUFA, and energy source for human and poultry nutrition.

Keywords: Borassus aethiopum Mart, fatty acids, metabolizable energy, minerals, protein

Procedia PDF Downloads 164
7544 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections

Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei

Abstract:

A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.

Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles

Procedia PDF Downloads 603
7543 Influence of Canola Oil and Lysine Supplementation Diets on Growth Performance and Fatty Acid Composition of Meat in Broiler Chicks

Authors: Ali Kiani, Seyed Davod. Sharifi, Shokoufeh Ghazanfari

Abstract:

A study was conducted to evaluate the effects of diets containing different levels of lysine and canola oil on growth performance and fatty acid composition of meat of broilers chicks. 240-day old Ross broiler chicks were used in a 3×2 factorial arrangement with canola oil (1, 3, and 5%) and lysine (recommended, and 25% more than recommended by Ross broiler manual) in completely randomized design with four replicates and 10 birds per each. The experimental diets were iso-caloric and iso-nitrogenous. Feed intake and body weight gain were recorded at the end of starter (10 d), grower (24 d) and finisher (42 d) periods, and feed conversion ratio was calculated. The results showed that the weight gain of chickens fed diets containing 5% canola oil were greater than those of birds fed on other diets (P<0.05). The dietary lysine had significant effect on feed intake and diets with 25% more than recommended, increased feed intake significantly (P<0.05). The canola oil×lysine interaction effects on performance were not significant. Among all treatment birds, those fed diets containing 5% canola oil had the highest meristic acid and oleic acid content in their meat. Broilers fed diets containing 3 or 5% canola oil possessed the higher content of linolenic acid and lower content of arachidonic acid in their meat (P<0.05). The results of the present experiment indicated that the diets containing canola oil (5%) and lysine at 25% higher than requirement, improve the growth performance, carcass and breast yield of broiler, and increase the accumulation of Omega-3 fatty acids in breast meat.

Keywords: broiler, canola oil. lysine, fatty acid

Procedia PDF Downloads 286
7542 Fabrication of Periodic Graphene-Like Structure of Zinc Oxide Piezoelectric Device

Authors: Zi-Gui Huang, Shen-Hsien Hu

Abstract:

This study proposes a fabrication of phononic-crystal acoustic wave device. A graphene-like atomic structure was adopted as the main research subject, and a graphene-like structure was designed using piezoelectric material zinc oxide and its periodic boundary conditions were defined using the finite element method. The effects of a hexagonal honeycomb structure were investigated regarding the band gap phenomenon. The use of micro-electromechanical systems process technology to make the film etched micron graphics, designed to produce four kinds of different piezoelectric structure (plat, periodic, single defect and double defects). Frequency response signals and phase change were also measured in this paper.

Keywords: MEMS, phononic crystal, piezoelectric material, Zinc oxide

Procedia PDF Downloads 529
7541 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 209
7540 Elaboration and Investigation of the New Ecologically Clean Friction Composite Materials on the Basis of Nanoporous Raw Materials

Authors: Lia Gventsadze, Elguja Kutelia, David Gventsadze

Abstract:

The purpose of the article is to show the possibility for the development of a new generation, eco-friendly (asbestos free) nano-porous friction materials on the basis of Georgian raw materials, along with the determination of technological parameters for their production, as well as the optimization of tribological properties and the investigation of structural aspects of wear peculiarities of elaborated materials using the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) methods. The study investigated the tribological properties of the polymer friction materials on the basis of the phenol-formaldehyde resin using the porous diatomite filler modified by silane with the aim to improve the thermal stability, while the composition was modified by iron phosphate, technical carbon and basalt fibre. As a result of testing the stable values of friction factor (0.3-0,45) were reached, both in dry and wet friction conditions, the friction working parameters (friction factor and wear stability) remained stable up to 500 OC temperatures, the wear stability of gray cast-iron disk increased 3-4 times, the soundless operation of materials without squeaking were achieved. Herewith it was proved that small amount of ingredients (5-6) are enough to compose the nano-porous friction materials. The study explains the mechanism of the action of nano-porous composition base brake lining materials and its tribological efficiency on the basis of the triple phase model of the tribo-pair.

Keywords: brake lining, friction coefficient, wear, nanoporous composite, phenolic resin

Procedia PDF Downloads 389
7539 Dual-Phase High Entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅) BxCy Ceramics Produced by Spark Plasma Sintering

Authors: Ana-Carolina Feltrin, Daniel Hedman, Farid Akhtar

Abstract:

High entropy ceramic (HEC) materials are characterized by their compositional disorder due to different metallic element atoms occupying the cation position and non-metal elements occupying the anion position. Several studies have focused on the processing and characterization of high entropy carbides and high entropy borides, as these HECs present interesting mechanical and chemical properties. A few studies have been published on HECs containing two non-metallic elements in the composition. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BxCy ceramics with different amounts of x and y, (0.25 HfC + 0.25 ZrC + 0.25 VC + 0.25 TiB₂), (0.25 HfC + 0.25 ZrC + 0.25 VB2 + 0.25 TiB₂) and (0.25 HfC + 0.25 ZrB2 + 0.25 VB2 + 0.25 TiB₂) were sintered from boride and carbide precursor powders using SPS at 2000°C with holding time of 10 min, uniaxial pressure of 50 MPa and under Ar atmosphere. The sintered specimens formed two HEC phases: a Zr-Hf rich FCC phase and a Ti-V HCP phase, and both phases contained all the metallic elements from 5-50 at%. Phase quantification analysis of XRD data revealed that the molar amount of hexagonal phase increased with increased mole fraction of borides in the starting powders, whereas cubic FCC phase increased with increased carbide in the starting powders. SPS consolidated (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BC0.5 and (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B1.5C0.25 had respectively 94.74% and 88.56% relative density. (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B0.5C0.75 presented the highest relative density of 95.99%, with Vickers hardness of 26.58±1.2 GPa for the borides phase and 18.29±0.8 GPa for the carbides phase, which exceeded the reported hardness values reported in the literature for high entropy ceramics. The SPS sintered specimens containing lower boron and higher carbon presented superior properties even though the metallic composition in each phase was similar to other compositions investigated. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅H₀.₂₅)BxCy ceramics were successfully fabricated in a boride-carbide solid solution and the amount of boron and carbon was shown to influence the phase fraction, hardness of phases, and density of the consolidated HECs. The microstructure and phase formation was highly dependent on the amount of non-metallic elements in the composition and not only the molar ratio between metals when producing high entropy ceramics with more than one anion in the sublattice. These findings show the importance of further studies about the optimization of the ratio between C and B for further improvements in the properties of dual-phase high entropy ceramics.

Keywords: high-entropy ceramics, borides, carbides, dual-phase

Procedia PDF Downloads 168
7538 Study of Tribological Behavior of Zirconium Alloy Against SS-410 at High Temperature

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys exhibit low neutron absorption cross-section and excellent mechanical properties. Due to these unique characteristics, these materials are widely used in designing core components of pressurized heavy water reactors (PHWRs). Another material that is widely used in the design of reactor core is stainless steel. Under operating conditions of the reactor, there are possibilities for mechanical and tribological interaction between the components made of zirconium alloy (Zr-2.5 Nb) and stainless steel (SS-410). This may result in wear of the material. To study the tribological characteristics of Zr-2.5 Nb and SS-410, low amplitude reciprocating wear tests are conducted at room temperature and at high temperatures (260 degrees Celsius). The tests are conducted at frequencies ranging from 5 Hz to 25 Hz. The displacement amplitude is varied from 200 µm to 600 µm. The responses are recorded, analyzed and correlated with damage observed using scanning electron microscopy (SEM) and an optical profilometer. Energy dispersive spectroscopy (EDS) is used to study the damage mechanism prevailing at the contact interface. A higher coefficient of friction (COF) is observed at higher temperatures as compared to the one at room temperature. Tests carried out at high temperature reveals adhesive wear as the dominant mechanism resulting in significant material transfer.

Keywords: PHWRs, Zr-2.5Nb, SS-410, wear

Procedia PDF Downloads 85
7537 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability

Procedia PDF Downloads 233
7536 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 423