Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25014

Search results for: material nonlinear analysis

25014 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction

Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil


Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.

Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering

Procedia PDF Downloads 322
25013 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar


An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 280
25012 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak


This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 281
25011 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim


In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 401
25010 Response of Solar Updraft Power Plants Incorporating Material Nonlinearity

Authors: Areeg Shermaddo


Solar updraft power plants (SUPP) provide a great potential for green and environmentally friendly renewable power generation. An up to 1000 m high chimney represents one of the major parts of each SUPP, which consist of the main shell structure and the stiffening rings. Including the nonlinear material behavior in a simulation of the chimney is computationally a demanding task. However, allowing the formation of cracking in concrete leads to a more economical design of the structure. In this work, an FE model of a SUPP is presented incorporating the nonlinear material behavior. The effect of wind loading intensity on the structural response is explored. Furthermore, the influence of the stiffness of the ring beams on the global behavior is as well investigated. The obtained results indicate that the minimum reinforcement is capable of carrying the tensile stresses provided that the ring beams are rather stiff.

Keywords: ABAQUS, nonlinear analysis, ring beams, SUPP

Procedia PDF Downloads 133
25009 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim


This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 254
25008 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells

Authors: M. Altekin, R. F. Yükseler


Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.

Keywords: Bending, Nonlinear, Plate, Point support, Shell.

Procedia PDF Downloads 167
25007 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita


This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 281
25006 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai


Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.

Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities

Procedia PDF Downloads 185
25005 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino


The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis

Procedia PDF Downloads 281
25004 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'

Authors: Minas Balyan


Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.

Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity

Procedia PDF Downloads 180
25003 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures

Authors: Dong Wook Lee


This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.

Keywords: computer aided engineering, finite element analysis, impact analysis, penetration analysis, composite material

Procedia PDF Downloads 31
25002 Assessment of the Energy Balance Method in the Case of Masonry Domes

Authors: M. M. Sadeghi, S. Vahdani


Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.

Keywords: energy balance method, pushover analysis, time history analysis, masonry dome

Procedia PDF Downloads 181
25001 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads

Authors: Khaled Sandjak, Boualem Tiliouine


Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.

Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials

Procedia PDF Downloads 165
25000 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil

Authors: M. Seguini, D. Nedjar


In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.

Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability

Procedia PDF Downloads 224
24999 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC

Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin


Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.

Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis

Procedia PDF Downloads 318
24998 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga


Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 222
24997 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan


Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 196
24996 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior

Authors: Sunghyun Kim, Hong-Gun Park


In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.

Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall

Procedia PDF Downloads 284
24995 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios

Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook


There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.

Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis

Procedia PDF Downloads 401
24994 A New Lateral Load Pattern for Pushover Analysis of RC Frame Structures

Authors: Mohammad Reza Ameri, Ali Massumi, Mohammad Haghbin


Non-linear static analysis, commonly referred to as pushover analysis, is a powerful tool for assessing the seismic response of structures. A suitable lateral load pattern for pushover analysis can bring the results of this simple, quick and low-cost analysis close to the realistic results of nonlinear dynamic analyses. In this research, four samples of 10- and 15 story (two- and four-bay) reinforced concrete frames were studied. The lateral load distribution patterns recommended in FEMA 273/356 guidelines were applied to the sample models in order to perform pushover analyses. The results were then compared to the results obtained from several nonlinear incremental dynamic analyses for a range of earthquakes. Finally, a lateral load distribution pattern was proposed for pushover analysis of medium-rise reinforced concrete buildings based on the results of nonlinear static and dynamic analyses.

Keywords: lateral load pattern, nonlinear static analysis, incremental dynamic analysis, medium-rise reinforced concrete frames, performance based design

Procedia PDF Downloads 355
24993 Finite Element Analysis of RC Frames with Retrofitted Infill Walls

Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu


The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.

Keywords: finite element analysis, infilled RC frames, infill wall, strengthening

Procedia PDF Downloads 355
24992 Thermal Instability in Solid under Irradiation

Authors: P. Selyshchev


Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.

Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability

Procedia PDF Downloads 185
24991 Topology Optimization of Composite Structures with Material Nonlinearity

Authors: Mengxiao Li, Johnson Zhang


Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.

Keywords: topology optimization, material composition, nonlinear modeling, hardening rules

Procedia PDF Downloads 262
24990 Development of Standard Evaluation Technique for Car Carpet Floor

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Tae-Hyeon Oh, Dae-Gyu Park


Statistical Energy Analysis is to be the most effective CAE Method for air-born noise analysis in the Automotive area. This study deals with a method to predict the noise level inside of the car under the steady-state condition using the SEA model of car for air-born noise analysis. We can identify weakened part due to the acoustic material properties using it. Therefore, it is useful for the material structural design.

Keywords: air-born noise, material structural design, acoustic material properties, absorbing

Procedia PDF Downloads 304
24989 Existence Theory for First Order Functional Random Differential Equations

Authors: Rajkumar N. Ingle


In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.

Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon

Procedia PDF Downloads 366
24988 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini


Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 395
24987 Elasto-Plastic Analysis of Structures Using Adaptive Gaussian Springs Based Applied Element Method

Authors: Mai Abdul Latif, Yuntian Feng


Applied Element Method (AEM) is a method that was developed to aid in the analysis of the collapse of structures. Current available methods cannot deal with structural collapse accurately; however, AEM can simulate the behavior of a structure from an initial state of no loading until collapse of the structure. The elements in AEM are connected with sets of normal and shear springs along the edges of the elements, that represent the stresses and strains of the element in that region. The elements are rigid, and the material properties are introduced through the spring stiffness. Nonlinear dynamic analysis has been widely modelled using the finite element method for analysis of progressive collapse of structures; however, difficulties in the analysis were found at the presence of excessively deformed elements with cracking or crushing, as well as having a high computational cost, and difficulties on choosing the appropriate material models for analysis. The Applied Element method is developed and coded to significantly improve the accuracy and also reduce the computational costs of the method. The scheme works for both linear elastic, and nonlinear cases, including elasto-plastic materials. This paper will focus on elastic and elasto-plastic material behaviour, where the number of springs required for an accurate analysis is tested. A steel cantilever beam is used as the structural element for the analysis. The first modification of the method is based on the Gaussian Quadrature to distribute the springs. Usually, the springs are equally distributed along the face of the element, but it was found that using Gaussian springs, only up to 2 springs were required for perfectly elastic cases, while with equal springs at least 5 springs were required. The method runs on a Newton-Raphson iteration scheme, and quadratic convergence was obtained. The second modification is based on adapting the number of springs required depending on the elasticity of the material. After the first Newton Raphson iteration, Von Mises stress conditions were used to calculate the stresses in the springs, and the springs are classified as elastic or plastic. Then transition springs, springs located exactly between the elastic and plastic region, are interpolated between regions to strictly identify the elastic and plastic regions in the cross section. Since a rectangular cross-section was analyzed, there were two plastic regions (top and bottom), and one elastic region (middle). The results of the present study show that elasto-plastic cases require only 2 springs for the elastic region, and 2 springs for the plastic region. This showed to improve the computational cost, reducing the minimum number of springs in elasto-plastic cases to only 6 springs. All the work is done using MATLAB and the results will be compared to models of structural elements using the finite element method in ANSYS.

Keywords: applied element method, elasto-plastic, Gaussian springs, nonlinear

Procedia PDF Downloads 143
24986 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari


Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 161
24985 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters

Authors: G. Krishna Mohana Rao, P. Ravi Kumar


Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.

Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers

Procedia PDF Downloads 426