Search results for: silicone oil removal
653 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer
Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli
Abstract:
The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer
Procedia PDF Downloads 354652 Adsorption of Methylene Blue by Pectin from Durian (Durio zibethinus) Seeds
Authors: Siti Nurkhalimah, Devita Wijiyanti, Kuntari
Abstract:
Methylene blue is a popular water-soluble dye that is used for dyeing a variety of substrates such as bacteria, wool, and silk. Methylene blue discharged into the aquatic environment will cause health problems for living things. Treatment method for industrial wastewater may be divided into three main categories: physical, chemical, and biological. Among them, adsorption technology is generally considered to be an effective method for quickly lowering the concentration of dissolved dyes in a wastewater. This has attracted considerable research into low-cost alternative adsorbents for adsorbing or removing coloring matter. In this research, pectin from durian seeds was utilized here to assess their ability for the removal of methylene blue. Adsorption parameters are contact time and dye concentration were examined in the batch adsorption processes. Pectin characterization was performed by FTIR spectrometry. Methylene blue concentration was determined by using UV-Vis spectrophotometer. FTIR results show that the samples showed the typical fingerprint in IR spectrogram. The adsorption result on 10 mL of 5 mg/L methylene blue solution achieved 95.12% when contact time 10 minutes and pectin 0.2 g.Keywords: pectin, methylene blue, adsorption, durian seed
Procedia PDF Downloads 186651 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation
Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath
Abstract:
Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD
Procedia PDF Downloads 537650 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators
Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane
Abstract:
In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.Keywords: multi-effect-evaporator, scale deposition, water desalination, heat transfer coefficient
Procedia PDF Downloads 151649 Heterogeneous Photocatalytic Degradation of Methylene Blue by Montmorillonite/CuxCd1-xs Nanomaterials
Authors: Horiya Boukhatem, Lila Djouadi, Hussein Khalaf, Rufino Manuel Navarro Yerga, Fernando Vaquero Gonzalez
Abstract:
Heterogeneous photo catalysis is an alternative method for the removal of organic pollutants in water. The photo excitation of a semi-conductor under ultra violet (UV) irradiation entails the production of hydroxyl radicals, one of the most oxidative chemical species. The objective of this study is the synthesis of nano materials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) and their application in photocatalysis of a cationic dye: methylene blue. The synthesized nano materials and montmorillonite were characterized by fourier transform infrared (FTIR). Test results of photo catalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nano materials montmorillonite/ CuxCd1-xS increase with the increasing of Cu concentration and it is significantly higher compared to that of sodium montmorillonite alone. The application of the kinetic model of Langmuir-Hinshelwood (L-H) to the photocatalytic test results showed that the reaction rate obeys to the first-order kinetic model.Keywords: heterogeneous photo catalysis, methylene blue, montmorillonite, nano material
Procedia PDF Downloads 339648 The Study on Energy Saving in Clarification Process for Water Treatment Plant
Authors: Wiwat Onnakklum
Abstract:
Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy
Procedia PDF Downloads 326647 Degradation of EE2 by Different Consortium of Enriched Nitrifying Activated Sludge
Authors: Pantip Kayee
Abstract:
17α-ethinylestradiol (EE2) is a recalcitrant micropollutant which is found in small amounts in municipal wastewater. But these small amounts still adversely affect for the reproductive function of aquatic organisms. Evidence in the past suggested that full-scale WWTPs equipped with nitrification process enhanced the removal of EE2 in the municipal wastewater. EE2 has been proven to be able to be transformed by ammonia oxidizing bacteria (AOB) via co-metabolism. This research aims to clarify the EE2 degradation pattern by different consortium of ammonia oxidizing microorganism (AOM) including AOA (ammonia oxidizing archaea) and investigate contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM. The result showed that AOA or AOB of N. oligotropha cluster in enriched nitrifying activated sludge (NAS) from 2mM and 5mM, commonly found in municipal WWTPs, could degrade EE2 in wastewater via co-metabolism. Moreover, the investigation of the contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM demonstrated that the new synthesized AMO enzyme may perform ammonia oxidation rather than the existing AMO enzyme or the existing AMO enzyme may has a small amount to oxidize ammonia.Keywords: 17α-ethinylestradiol, nitrification, ammonia oxidizing bacteria, ammonia oxidizing archaea
Procedia PDF Downloads 293646 Parametric Optimization of Electric Discharge Machining Process Using Taguchi's Method and Grey Relation Analysis
Authors: Pushpendra S. Bharti
Abstract:
Process yield of electric discharge machining (EDM) is directly related to optimal combination(s) of process parameters. Optimization of process parameters of EDM is a multi-objective optimization problem owing to the contradictory behavior of performance measures. This paper employs Grey Relation Analysis (GRA) method as a multi-objective optimization technique for the optimal selection of process parameters combination. In GRA, multi-response optimization is converted into optimization of a single response grey relation grade which ultimately gives the optimal combination of process parameters. Experiments were carried out on die-sinking EDM by taking D2 steel as work piece and copper as electrode material. Taguchi's orthogonal array L36 was used for the design of experiments. On the experimental values, GRA was employed for the parametric optimization. A significant improvement has been observed and reported in the process yield by taking the parametric combination(s) obtained through GRA.Keywords: electric discharge machining, grey relation analysis, material removal rate, optimization
Procedia PDF Downloads 409645 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components
Authors: Francesca Gullo, Paola Palmero, Massimo Messori
Abstract:
Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites
Procedia PDF Downloads 54644 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam
Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani
Abstract:
Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology
Procedia PDF Downloads 87643 Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves
Authors: Sadiq Sani, Muhammad B. Ibrahim
Abstract:
Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption.Keywords: adsorption isotherms, methyl orange, neem leaves, watermelon rinds
Procedia PDF Downloads 273642 Phosphoproteomic Analysis of the Response of Rice Leaves to Chitosan under Drought Stress
Authors: Narumon Phaonakrop, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Wasinee Pongprayoon
Abstract:
Chitosan has been proposed as a natural polymer, and it is derived from chitin. The objective of this research was to determine the growth promoting responses induced by chitosan at the molecular physiology level in Khao Dawk Mali 105 (KDML 105) rice (Oryza sativa L.) seedlings under drought stress by adding of 2% polyethylene glycol 4000 (PEG4000) to the nutrient solution and after removal of the drought stress (re-water). Oligomeric chitosan at 40 ppm could enhance shoot fresh weight and shoot dry weight during drought stress and re-water. After 7 days of drought stress and re-water, significant increases in chlorophyll a and chlorophyll b contents in KDML 105 cultivar were observed. The 749 phosphoproteins in rice leaf treated with chitosan could be resolved by phosphoprotein enrichment, tryptic digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. They can be classified into 10 groups. Proteins involved in the metabolic process and biological regulation were upregulated in response to chitosan during drought stress. This work will help us to understand protein phosphorylation relating to chitosan response during drought stress in aromatic rice seedlings.Keywords: Chitosan, drought, phosphoproteome, rice
Procedia PDF Downloads 164641 Step Height Calibration Using Hamming Window: Band-Pass Filter
Authors: Dahi Ghareab Abdelsalam Ibrahim
Abstract:
Calibration of step heights with high accuracy is needed for many applications in the industry. In general, step height consists of three bands: pass band, transition band (roll-off), and stop band. Abdelsalam used a convolution of the transfer functions of both Chebyshev type 2 and elliptic filters with WFF of the Fresnel transform in the frequency domain for producing a steeper roll-off with the removal of ripples in the pass band- and stop-bands. In this paper, we used a new method based on the Hamming window: band-pass filter for calibration of step heights in terms of perfect adjustment of pass-band, roll-off, and stop-band. The method is applied to calibrate a nominal step height of 40 cm. The step height is measured first by asynchronous dual-wavelength phase-shift interferometry. The measured step height is then calibrated by the simulation of the Hamming window: band-pass filter. The spectrum of the simulated band-pass filter is simulated at N = 881 and f0 = 0.24. We can conclude that the proposed method can calibrate any step height by adjusting only two factors which are N and f0.Keywords: optical metrology, step heights, hamming window, band-pass filter
Procedia PDF Downloads 83640 Bioremediation of PAHs-Contaminated Soil Using Land Treatment Processes
Authors: Somaye Eskandary
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are present in crude oil and its derivatives contaminate soil and also increase carcinogen and mutagen contamination, which is a concern for researchers. Land farming is one of the methods that remove pollutants from the soil by native microorganisms. It seems that this technology is cost-effective, environmentally friendly and causes less debris problem to be disposed. This study aimed to refine the polycyclic aromatic hydrocarbons from oil-contaminated soil using the land farming method. In addition to examine the concentration of polycyclic aromatic hydrocarbons by GC-FID, some characteristics such as soil microbial respiration and dehydrogenase, peroxidase, urease, acid and alkaline phosphatase enzyme concentration were also measured. The results showed that after land farming process the concentrations of some polycyclic aromatic hydrocarbons dropped to 50 percent. The results showed that the enzyme concentration is reduced by reducing the concentration of hydrocarbons and microbial respiration. These results emphasize the process of land farming for removal of polycyclic aromatic hydrocarbons from soil by indigenous microorganisms.Keywords: soil contamination, gas chromatography, native microorganisms, soil enzymes, microbial respiration, carcinogen
Procedia PDF Downloads 385639 Study of Electrocoagulation on the Elimination of Chromium in Waste Water From an Electroplating Bath Using Aluminium Electrodes
Authors: Salim Ahmed
Abstract:
Electrocoagulation has proven its effectiveness in industrial effluent treatment by eliminating pollutants, particularly metallic ones. The electrochemical processes that occur at aluminium electrodes give excellent performance. In this work, electrocoagulation tests were carried out on an industrial effluent from an electroplating bath located in Casablanca (Morocco). The aim was to remove chromium and reuse the purified water for other purposes within the company. To this end, we have optimised the operating parameters that affect the efficiency of electrocoagulation, such as electrical voltage, electrode material, stirring speed and distance between electrodes. We also evaluated these parameters. The effect on pH, conductivity, turbidity and chromium concentration. The tests were carried out in a perfectly stirred reactor on an industrial solution rich in chromium. The effluent concentration was 1000 mg/L of Cr6+. Chromium removal efficiency was determined for the following operating conditions: aluminium electrodes, regulated voltage of 6 volts and 12 volts, optimum stirring speed of 600 rpm and distance between electrodes of 2 cm. The sludge produced by electrocoagulation was characterised by X-ray diffractometry, infrared spectroscopy (IR) and scanning electron microscopy (SEM).Keywords: wastewater, chromium, electrocoagulation, aluminium, aluminium hydroxide
Procedia PDF Downloads 91638 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells
Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola
Abstract:
In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.Keywords: electrocoagulation, water, electrodes, iron
Procedia PDF Downloads 264637 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System
Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao
Abstract:
Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket
Procedia PDF Downloads 206636 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors
Authors: Amin Mojiri, Hamidi Abdul Aziz
Abstract:
Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon
Procedia PDF Downloads 466635 Intertidal Fixed Stake Net Trap (Hadrah) Fishery in Kuwait, Distribution, Catch Rate, and Species Composition
Authors: Ali F. Al-Baz, Mohsen M. Al-Husaini, James M. Bishop
Abstract:
Intertidal fixed stake net trap (hadrah) is one of the oldest fishing gears used throughout the Arabian Gulf countries since 1800s and also one of most efficient methods of capturing fish from the intertidal area. This study described the hadrah fishery in Kuwait. From October 2001 to December 2002, more than 37,372 specimens representing 95 species (89 fish, 2 mollusks, 4 crustaceans) were measured from hadrah located in three different areas along Kuwait's coast. In Kuwait Bay, catch rates averaged 62 kg/sir day (range 14 kg/sir-day in February to 160 kg/sir-day in October 2002). Commercial species accounted for 41% of the catches. Catches from Failakah Island averaged 96 kg/sir-day from June through September, with 61% of the catch being commercial species. In the southern area, catches averaged only 32 kg/sir-day, and only 34% were commercially important. Forty percent of the hadrah catches were juveniles which shows that the shallow intertidal waters are prime nursery habitat, particularly in Kuwait Bay. To maintain ecosystem biodiversity and recruitment success of the fishes, we recommended that all hadrah should be removed from Kuwait Bay. In the future, removal of hadrah in other locations should be considered.Keywords: catch and effort, hadrah, intertidal fixed stake net, Kuwait, species composition
Procedia PDF Downloads 501634 Implementing Bioremediation Technologies to Degrade Chemical Warfare Agents and Explosives from War Affected Regions in Sri Lanka
Authors: Elackiya Sithamparanathan
Abstract:
Chemical agents used during the Sri Lankan civil war continue to threaten human and environmental health as affected areas are re-settled. Bioremediation is a cost-effective and eco-friendly approach to degrading chemical agents, and has greater public acceptance than chemical degradation. Baseline data on contaminant distribution, environmental parameters, and indigenous microbes are required before bioremediation can commence. The culture and isolate of suitable microbes and enzymes should be followed by laboratory trials, before field application and long-term monitoring of contaminant concentration, soil parameters, microbial ecology, and public health to monitor environmental and public health. As local people are not aware of the persistence of warfare chemicals and do not understand the potential impacts on human health, community awareness programs are required. Active community participation, and collaboration with international and local agencies, would contribute to the success of bioremediation and the effective removal of chemical agents in war affected areas of Sri Lanka.Keywords: bioremediation, environmental protection, human health, war affected regions in Sri Lanka
Procedia PDF Downloads 383633 Controlled Deconstruction and Rehabilitation of Fire Damaged Structure
Authors: Javed Y. Uppal
Abstract:
In this paper, a case study of a 13 storied multi storied main headquarters building of the Lahore Development Authority Lahore Pakistan has been presented, the 9th floor of which caught fire due to short circuiting and the flare spread through air-conditioning ducts to top three floors, and the building remained under fire for 15 hours before it was quenched. Some columns at the upper 3 floors started crumbling down, which were immediately propped. A visual inspection of site was first carried out, followed by onsite material tests and lab tests for residual strengths, which led to the decision of removal of the top 3 floors in a planned sequence of diamond cutting of middle strips, column strips, and shear walls, in panels and their lifting up by overhead cranes. The waffle slabs were stitched and jacketed with low viscosity polymer layer. The damaged bars were supplemented. The cracked columns were jacketed as well. The validity of rehabilitation procedure was established by load deflection behavior tests and long term performance observation over a period of 5 years. The paper concludes that the procedures adopted could be recommended for such events.Keywords: fire damage, shotcrete, waffle slabs, delamination, drying cracking, jacketing
Procedia PDF Downloads 112632 Material Properties Evolution Affecting Demisability for Space Debris Mitigation
Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji
Abstract:
The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.Keywords: demisability, emissivity, lightweight, re-entry, survivability
Procedia PDF Downloads 116631 Simulated Microgravity Inhibits L-Type Calcium Channel Currents by Up-Regulation of miR-103 in Osteoblasts
Authors: Zhongyang Sun, Shu Zhang
Abstract:
In osteoblasts, L-type voltage sensitive calcium channels (LTCCs), especially the Cav1.2 LTCCs, play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. Several lines of evidence have revealed that the density of bone is increased and the resorption of bone is decreased when these calcium channels in osteoblasts are activated. And numerous studies have shown that mechanical loading promotes bone formation in the modeling skeleton, whereas removal of this stimulus in microgravity results in a reduction in bone mass. However, the effect of microgravity on LTCCs in osteoblasts is still unknown. The aim of this study was to determine whether microgravity exerts influence on LTCCs in osteoblasts and the possible mechanisms underlying. In this study, we demonstrate that simulated microgravity substantially inhibits LTCCs in osteoblast by suppressing the expression of Cav1.2. Then we show that the up-regulation of miR-103 is involved in the down-regulation of Cav1.2 expression and inhibition of LTCCs by simulated microgravity in osteoblasts. Our study provides a novel mechanism of simulated microgravity-induced adverse effects on osteoblasts, offering a new avenue to further investigate the bone loss caused by microgravity.Keywords: L-type voltage sensitive calcium channels, Cav1.2, osteoblasts, microgravity
Procedia PDF Downloads 306630 Adsorption of Cd(II) and Pb(II) from Aqueous Solutions by Using Pods of Acacia Karoo
Authors: Gulshan Kumar Jawa, Sandeep Mohan Ahuja
Abstract:
With the increase in industrialization, the presence of heavy metals in wastewater streams has turned into a serious concern for the ecosystem. The metals diffuse through the food chains, causing various health hazards. Conventional methods used to remove these heavy metals from water have some limitations, such as cost, secondary pollution due to sludge formation, recovery of metal, economic viability at low metal concentrations, etc. Many of the biomaterials have been investigated by researchers for the adsorption of heavy metals from water solutions as an alternative technique for the last two decades and have found promising results. In this paper, the batch study on the use of pods of acacia karoo for the adsorption of Cd(II) and Pb(II) from aqueous solutions has been reported. The effect of various parameters on the removal of metal ions, such as pH, contact time, stirring speed, initial metal ion concentration, adsorbent dose, and temperature, have been established to find the optimum parameters through one parameter optimization. Further, kinetic, equilibrium, and thermodynamic studies have been conducted. The pods of acacia karoo have shown great potential for adsorption of Cd(II) and Pb(II) from aqueous solutions and have proven to be a better and more economical alternative for the purpose.Keywords: adsorption, heavy metals, biomaterials, Cadmium(II), Lead(II), pods of acacia karoo
Procedia PDF Downloads 43629 Simultaneous Saccharification and Co-Fermentation of Paddy Straw and Fruit Wastes into Ethanol Production
Authors: Kamla Malik
Abstract:
For ethanol production from paddy straw firstly pretreatment was done by using sodium hydroxide solution (2.0%) at 15 psi for 1 hr. The maximum lignin removal was achieved with 0.5 mm mesh size of paddy straw. It contained 72.4 % cellulose, 15.9% hemicelluloses and 2.0 % lignin after pretreatment. Paddy straw hydrolysate (PSH) with fruits wastes (5%), such as sweet lime, apple, sapota, grapes, kinnow, banana, papaya, mango, and watermelon were subjected to simultaneous saccharification and co-fermentation (SSCF) for 72 hrs by co-culture of Saccharomyces cerevisiae HAU-1 and Candida sp. with 0.3 % urea as a cheap nitrogen source. Fermentation was carried out at 35°C and determined ethanol yield at 24 hours interval. The maximum production of ethanol was produced within 72 hrs of fermentation in PSH + sapota peels (3.9% v/v) followed by PSH + kinnow peels (3.6%) and PSH+ papaya peels extract (3.1 %). In case of PSH+ banana peels and mango peel extract the ethanol produced were 2.8 % and 2.2 % (v/v). The results of this study suggest that wastes from fruits that contain fermentable sugar should not be discarded into our environment, but should be supplemented in paddy straw which converted to useful products like bio-ethanol that can serve as an alternative energy source.Keywords: ethanol, fermentation, fruit wastes, paddy straw
Procedia PDF Downloads 390628 Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach
Authors: Dheepshika Kodieswaran
Abstract:
The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined.Keywords: petroleum refinery sludge, co-culturing, polycyclic hydrocarbons, microalgal-bacterial consortia
Procedia PDF Downloads 105627 The Temperature Degradation Process of Siloxane Polymeric Coatings
Authors: Andrzej Szewczak
Abstract:
Study of the effect of high temperatures on polymer coatings represents an important field of research of their properties. Polymers, as materials with numerous features (chemical resistance, ease of processing and recycling, corrosion resistance, low density and weight) are currently the most widely used modern building materials, among others in the resin concrete, plastic parts, and hydrophobic coatings. Unfortunately, the polymers have also disadvantages, one of which decides about their usage - low resistance to high temperatures and brittleness. This applies in particular thin and flexible polymeric coatings applied to other materials, such a steel and concrete, which degrade under varying thermal conditions. Research about improvement of this state includes methods of modification of the polymer composition, structure, conditioning conditions, and the polymerization reaction. At present, ways are sought to reflect the actual environmental conditions, in which the coating will be operating after it has been applied to other material. These studies are difficult because of the need for adopting a proper model of the polymer operation and the determination of phenomena occurring at the time of temperature fluctuations. For this reason, alternative methods are being developed, taking into account the rapid modeling and the simulation of the actual operating conditions of polymeric coating’s materials in real conditions. The nature of a duration is typical for the temperature influence in the environment. Studies typically involve the measurement of variation one or more physical and mechanical properties of such coating in time. Based on these results it is possible to determine the effects of temperature loading and develop methods affecting in the improvement of coatings’ properties. This paper contains a description of the stability studies of silicone coatings deposited on the surface of a ceramic brick. The brick’s surface was hydrophobized by two types of inorganic polymers: nano-polymer preparation based on dialkyl siloxanes (Series 1 - 5) and an aqueous solution of the silicon (series 6 - 10). In order to enhance the stability of the film formed on the brick’s surface and immunize it to variable temperature and humidity loading, the nano silica was added to the polymer. The right combination of the polymer liquid phase and the solid phase of nano silica was obtained by disintegration of the mixture by the sonification. The changes of viscosity and surface tension of polymers were defined, which are the basic rheological parameters affecting the state and the durability of the polymer coating. The coatings created on the brick’s surfaces were then subjected to a temperature loading of 100° C and moisture by total immersion in water, in order to determine any water absorption changes caused by damages and the degradation of the polymer film. The effect of moisture and temperature was determined by measurement (at specified number of cycles) of changes in the surface hardness (using a Vickers’ method) and the absorption of individual samples. As a result, on the basis of the obtained results, the degradation process of polymer coatings related to their durability changes in time was determined.Keywords: silicones, siloxanes, surface hardness, temperature, water absorption
Procedia PDF Downloads 243626 Waste Bone Based Catalyst: Characterization and Esterification Application
Authors: Amit Keshav
Abstract:
Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversionKeywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion
Procedia PDF Downloads 145625 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration
Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen
Abstract:
Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration
Procedia PDF Downloads 37624 Fabrication and Characterization of Glass Nanofibers through Electrospinning of Silica Sol-Gel along with in situ Synthesis of Ag Nanoparticles
Authors: Mahsa Kangazian Kangazi, Ali Akbar Ghareh Aghaji, Majid Montazer
Abstract:
Nowadays, silica nanofibers are highly regarded among the inorganic nanofibers due to the high reactivity and availability of silicon compounds in nature. Sol-gel process is required for electrospinning of silica nanofibers in which a metal alkoxide is hydrolyzed, and the viscosity is increased. In this study, silica nanofibers containing silver nanoparticles were synthesized and electrospun from a mixture of silica sol with an easy spinnable polymer (PVA) as an additive. The silica sol contains tetraethyl orthosilicate (TEOS), silver nitrate, distilled water, nitric acid, and ethanol. Nanofibers were formed through electrospinning setup. The nanofibers were calcinated to remove the solvent and additive polymer. Consequently, pure silica nanofibers were produced. FTIR analysis indicated entire removal of polyvinyl alcohol from the structure and formation of silan groups. The presence of silver, silica and oxygen was confirmed by EDX. Also, XRD patterns revealed the presence of silver nanoparticles with a mean crystal size of 18 nm. FESEM images showed that adding silver nitrate into the sol-gel, resulted in lower nanofibers diameter from 286 to 136 nm. Furthermore, the electrospun nanofibers were more resistance in acidic media than alkaline media.Keywords: in situ synthesis of silver nanoparticles, silica nanofibers, sol-gel, tetraethyl orthosilicate
Procedia PDF Downloads 179