Search results for: polyethylene oxide (PEO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1736

Search results for: polyethylene oxide (PEO)

806 Effects of Supplementation of Nano-Particle Zinc Oxide and Mannan-Oligosaccharide (MOS) on Growth, Feed Utilization, Fatty Acid Profile, Intestinal Morphology, and Hematology in Nile tilapia, Oreochromis niloticus (L.) fry

Authors: Tewodros Abate Alemayehu, Abebe Getahun, Akewake Geremew, Dawit Solomon Demeke, John Recha, Dawit Solomon, Gebremedihin Ambaw, Fasil Dawit Moges

Abstract:

The purpose of this study was to examine the effects of supplementation of zinc oxide (ZnO) nanoparticles and Mannan-oligosaccharide (MOS) on growth performance, feed utilization, fatty acid profiles, hematology, and intestinal morphology of Chamo strain Nile tilapia Oreochromis niloticus (L.) fry reared at optimal temperature (28.62 ± 0.11 ⁰C). Nile tilapia fry (initial weight 1.45 ± 0.01g) were fed basal diet/control diet (Diet-T1), 6 g kg-¹ MOS supplemented diet (Diet-T2), 4 mg ZnO-NPs supplemented diet (Diet-T3), 4 mg ZnO-Bulk supplemented diet (Diet-T4), a combination of 6 g kg-¹ MOS and 4 mg ZnO-Bulk supplemented diet (Diet-T5) and combination of 6 g kg-¹ MOS and 4 mg ZnO-NPs supplemented diet (Diet-T6). Randomly, duplicate aquariums for each diet were assigned and hand-fed to apparent satiation three times daily (08:00, 12:00, and 16:00) for 12 weeks. Fish fed MOS, ZnO-NPs, and a combination of MOS and ZnO-Bulk supplemented diet had higher weight gain, Daily Growth Rate (DGR), and Specific Growth Rate (SGR) than fish fed the basal diet and other feeding groups, although the effect was not significant. According to the GC analysis, Nile tilapia was supplemented with 6 g kg-¹ MOS, 4 mg ZnO-NPs, or a combination of ZnO-NPs, and MOS showed the highest content of EPA, DHA, and higher ratios of PUFA/SFA than other feeding groups. Mean villi length in the proximal and middle portion of the Nile tilapia intestine was affected significantly (p<0.05) by diet. Fish fed Diet-T2 and Diet-T3 had significantly higher villi lengths in the proximal and middle portions of the intestine compared to other feeding groups. The inclusion of additives significantly improved goblet numbers at the proximal, middle, and distal portions of the intestine. Supplementation of additives had also improved some hematological parameters compared with control groups. In conclusion, dietary supplementation of additives MOS and ZnO-NPs could confer benefits on growth performance, fatty acid profiles, hematology, and intestinal morphology of Chamo strain Nile tilapia.

Keywords: chamo strain nile tilapia, fatty acid profile, hematology, intestinal morphology, MOS, ZnO-Bulk, ZnO-NPs

Procedia PDF Downloads 57
805 Thermal Analysis of Automobile Radiator Using Nanofluids

Authors: S. Sumanth, Babu Rao Ponangi, K. N. Seetharamu

Abstract:

As the technology is emerging day by day, there is a need for some better methodology which will enhance the performance of radiator. Nanofluid is the one area which has promised the enhancement of the radiator performance. Currently, nanofluid has got a well effective solution for enhancing the performance of the automobile radiators. Suspending the nano sized particle in the base fluid, which has got better thermal conductivity value when compared to a base fluid, is preferably considered for nanofluid. In the current work, at first mathematical formulation has been carried out, which will govern the performance of the radiator. Current work is justified by plotting the graph for different parameters. Current work justifies the enhancement of radiator performance using nanofluid.

Keywords: nanofluid, radiator performance, graphene, gamma aluminium oxide (γ-Al2O3), titanium dioxide (TiO2)

Procedia PDF Downloads 232
804 Performance Comparison of a Low Cost Air Quality Sensor with a Commercial Electronic Nose

Authors: Ünal Kızıl, Levent Genç, Sefa Aksu, Ahmet Tapınç

Abstract:

The Figaro AM-1 sensor module which employs TGS 2600 model gas sensor in air quality assessment was used. The system was coupled with a microprocessor that enables sensor module to create warning message via telephone. This low cot sensor system’s performance was compared with a Diagnose II commercial electronic nose system. Both air quality sensor and electronic nose system employ metal oxide chemical gas sensors. In the study experimental setup, data acquisition methods for electronic nose system, and performance of the low cost air quality system were evaluated and explained.

Keywords: air quality, electronic nose, environmental quality, gas sensor

Procedia PDF Downloads 425
803 Evaluation of Greenhouse Covering Materials

Authors: Mouustafa A. Fadel, Ahmed Bani Hammad, Faisal Al Hosany, Osama Iwaimer

Abstract:

Covering materials of greenhouses is the most governing component of the construction which controls two major parameters the amount of light and heat diffused from the surrounding environment into the internal space. In hot areas, balancing between inside and outside the greenhouse consumes most of the energy spent in production systems. In this research, a special testing apparatus was fabricated to simulate the structure of the greenhouse provided with a 400W full spectrum light. Tests were carried out to investigate the effectiveness of different commercial covering material in light and heat diffusion. Twenty one combinations of Fiberglass, Polyethylene, Polycarbonate, Plexiglass and Agril (PP nonwoven fabric) were tested. It was concluded that Plexiglass was the highest in light transparency of 87.4% where the lowest was 33% and 86.8% for Polycarbonate sheets. The enthalpy of the air moving through the testing rig was calculated according to air temperature differences between inlet and outlet openings. The highest enthalpy value was for one layer of Fiberglass and it was 0.81 kj/kg air while it was for both Plexiglass and blocked Fiberglass with a value of 0.5 kj/kg air. It is concluded that, although Plexiglass has high level of transparency which is indeed very helpful under low levels of solar flux, it is not recommended under hot arid conditions where solar flux is available most of the year. On the other hand, it might be a disadvantage to use Plixeglass specially in summer where it helps to accumulate more heat inside the greenhouse.

Keywords: greenhouse, covering materials, aridlands, environmental control

Procedia PDF Downloads 460
802 Cardiolipin-Incorporated Liposomes Carrying Curcumin and Nerve Growth Factor to Rescue Neurons from Apoptosis for Alzheimer’s Disease Treatment

Authors: Yung-Chih Kuo, Che-Yu Lin, Jay-Shake Li, Yung-I Lou

Abstract:

Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with cardiolipin (CL) to downregulate the phosphorylation of mitogen-activated protein kinases for Alzheimer’s disease (AD) management. AD belongs to neurodegenerative disorder with a gradual loss of memory, yielding irreversible dementia. CL-conjugated LIP loaded with CRM (CRM-CL/LIP) and that with NGF (NGF-CL/LIP) were applied to AD models of SK-N-MC cells and Wistar rats with an insult of β-amyloid peptide (Aβ). Lipids comprising 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (Avanti Polar Lipids, Alabaster, AL), 1',3'-bis[1,2- dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (CL; Avanti Polar Lipids), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy(polyethylene glycol)-2000] (Avanti Polar Lipids), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (Avanti Polar Lipids) and CRM (Sigma–Aldrich, St. Louis, MO) were dissolved in chloroform (J. T. Baker, Phillipsburg, NJ) and condensed using a rotary evaporator (Panchum, Kaohsiung, Taiwan). Human β-NGF (Alomone Lab, Jerusalem, Israel) was added in the aqueous phase. Wheat germ agglutinin (WGA; Medicago AB, Uppsala, Sweden) was grafted on LIP loaded with CRM for (WGA-CRM-LIP) and CL-conjugated LIP loaded with CRM (WGA-CRM-CL/LIP) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Sigma–Aldrich) and N-hydroxysuccinimide (Alfa Aesar, Ward Hill, MA). The protein samples of SK-N-MC cells (American Type Tissue Collection, Rockville, MD) were used for sodium dodecyl sulfate (Sigma–Aldrich) polyacrylamide gel (Sigma–Aldrich) electrophoresis. In animal study, the LIP formulations were administered by intravenous injection via a tail vein of male Wistar rats (250–280 g, 8 weeks, BioLasco, Taipei, Taiwan), which were housed in the Animal Laboratory of National Chung Cheng University in accordance with the institutional guidelines and the guidelines of Animal Protection Committee under the Council of Agriculture of the Republic of China. We found that CRM-CL/LIP could inhibit the expressions of phosphorylated p38 (p-p38), p-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 (p-Ser202) to retard the neuronal apoptosis. Free CRM and released CRM from CRM-LIP and CRM-CL/LIP were not in a straightforward manner to effectively inhibit the expression of p-p38 and p-JNK in the cytoplasm. In addition, NGF-CL/LIP enhanced the quantities of p-neurotrophic tyrosine kinase receptor type 1 (p-TrkA) and p-extracellular-signal-regulated kinase 5 (p-ERK5), preventing the Aβ-induced degeneration of neurons. The membrane fusion of NGF-LIP activated the ERK5 pathway and the targeting capacity of NGF-CL/LIP enhanced the possibility of released NGF to affect the TrkA level. Moreover, WGA-CRM-LIP improved the permeation of CRM across the blood–brain barrier (BBB) and significantly reduced the Aβ plaque deposition and malondialdehyde level and increased the percentage of normal neurons and cholinergic function in the hippocampus of AD rats. This was mainly because the encapsulated CRM was protected by LIP against a rapid degradation in the blood. Furthermore, WGA on LIP could target N-acetylglucosamine on endothelia and increased the quantity of CRM transported across the BBB. In addition, WGA-CRM-CL/LIP could be effective in suppressing the synthesis of acetylcholinesterase and reduced the decomposition of acetylcholine for better neurotransmission. Based on the in vitro and in vivo evidences, WGA-CRM-CL/LIP can rescue neurons from apoptosis in the brain and can be a promising drug delivery system for clinical AD therapy.

Keywords: Alzheimer’s disease, β-amyloid, liposome, mitogen-activated protein kinase

Procedia PDF Downloads 318
801 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)

Procedia PDF Downloads 309
800 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 476
799 The Effects of Nano Zerovalent Iron (nZVI) and Magnesium Oxide Nanoparticles on Methane Production during Anaerobic Digestion of Waste Activated Sludge

Authors: Passkorn Khanthongthip, John T. Novak

Abstract:

Many studies have been reported that the nZVI and MgO NPs were often found in waste activated sludge (WAS). However, little is known about the impact of those NPs on WAS stabilization. The aims of this study were to investigate the effects of both NPs on WAS anaerobic digestion for methane production and to examine the change of metanogenic population under those different environments using qPCR. Four dosages (2, 50, 100, and 200 mg/g-TSS) of MgO NPs were added to four different bottles containing WAS to investigate the impact of MgO NPs on methane production during WAS anaerobic digestion. The effects of nZVI on methane production during WAS anaerobic digestion were also conducted in another four bottles using the same methods described above except that the MgO NPs were replaced by nZVI. A bottle of WAS anaerobic digestion without nanoparticles addition was also operated to serve as a control. It was found that the relative amounts, compared to the control system, of methane production in each WAS anaerobic digestion bottle adding 2, 50, 100, 200 mg/gTSS MgO NPs were 98, 62, 28, and 14 %, respectively. This suggests that higher MgO NPs resulted in lower methane production. The data of batch test for the effects of corresponding released Mg2+ indicated that 50 mg/gTSS MgO NPs or higher could inhibit methane production at least 25%. Moreover, the volatile fatty acid (VFA) concentration was 328, 384, 928, 3,684, and 7,848 mg/L for the control and four WAS anaerobic digestion bottles with 2, 50, 100, 200 mg/gTSS MgO NPs addition, respectively. Higher VFA concentration could reduce pH and subsequently decrease methanogen growth, resulting in lower methane production. The relative numbers of total gene copies of methanogens analyzed from samples taken from WAS anaerobic digestion bottles were approximately 99, 68, 38, and 24 % of control for the addition of 2, 50, 100, and 200 mg/gTSS, respectively. Obviously, the more MgO NPs appeared in sludge anaerobic digestion system, the less methanogens remained. In contrast, the relative amount of methane production found in another four WAS anaerobic digestion bottles adding 2, 50, 100, and 200 mg/gTSS nZVI were 102, 128, 112, and 104 % of the control, respectively. The measurement of methanogenic population indicated that the relative content of methanogen gene copies were 101, 132, 120, and 112 % of those found in control, respectively. Additionally, the cumulative VFA was 320, 234, 308, and 330 mg/L, respectively. This reveals that nZVI addition could assist to increase methanogenic population. Higher amount of methanogen accelerated VFA degradation for greater methane production, resulting in lower VFA accumulation in digesters. Moreover, the data for effects of corresponding released Fe2+ conducted by batch tests suggest that the addition of approximately 50 mg/gTSS nZVI increased methane production by 20%. In conclusion, the presence of MgO NPs appeared to diminish the methane production during WAS anaerobic digestion. Higher MgO NPs dosages resulted in more inhibition on methane production. In contrast, nZVI addition promoted the amount of methanogenic population which facilitated methane production.

Keywords: magnesium oxide nanoparticles, methane production, methanogenic population, nano zerovalent iron

Procedia PDF Downloads 279
798 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes

Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee

Abstract:

Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.

Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing

Procedia PDF Downloads 237
797 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide

Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh

Abstract:

Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.

Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration

Procedia PDF Downloads 131
796 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 68
795 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells

Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu

Abstract:

Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.

Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode

Procedia PDF Downloads 153
794 Insights on Nitric Oxide Interaction with Phytohormones in Rice Root System Response to Metal Stress

Authors: Piacentini Diego, Della Rovere Federica, Fattorini Laura, Lanni Francesca, Cittadini Martina, Altamura Maria Maddalena, Falasca Giuseppina

Abstract:

Plants have evolved sophisticated mechanisms to cope with environmental cues. Changes in intracellular content and distribution of phytohormones, such as the auxin indole-3-acetic acid (IAA), have been involved in morphogenic adaptation to environmental stresses. In addition to phytohormones, plants can rely on a plethora of small signal molecules able to promptly sense and transduce the stress signals, resulting in morpho/physiological responses thanks also to their capacity to modulate the levels/distribution/reception of most hormones. Among these signaling molecules, nitrogen monoxide (nitric oxide – NO) is a critical component in several plant acclimation strategies to both biotic and abiotic stresses. Depending on its levels, NO increases plant adaptation by enhancing the enzymatic or non-enzymatic antioxidant systems or by acting as a direct scavenger of reactive oxygen/nitrogen (ROS/RNS) species produced during the stress. In addition, exogenous applications of NO-specific donor compounds showed the involvement of the signal molecule in auxin metabolism, transport, and signaling, under both physiological and stress conditions. However, the complex mechanisms underlying NO action in interacting with phytohormones, such as auxins, during metal stress responses are still poorly understood and need to be better investigated. Emphasis must be placed on the response of the root system since it is the first plant organ system to be exposed to metal soil pollution. The monocot Oryza sativa L. (rice) has been chosen given its importance as a stable food for some 4 billion people worldwide. In addition, increasing evidence has shown that rice is often grown in contaminated paddy soils with high levels of heavy metal cadmium (Cd) and metalloid arsenic (As). The facility through which these metals are taken up by rice roots and transported to the aerial organs up to the edible caryopses makes rice one of the most relevant sources of these pollutants for humans. This study aimed to evaluate if NO has a mitigatory activity in the roots of rice seedlings against Cd or As toxicity and to understand if this activity requires interactions with auxin. Our results show that exogenous treatments with the NO-donor SNP alleviate the stress induced by Cd, but not by As, in in-vitro-grown rice seedlings through increased intracellular root NO levels. The damages induced by the pollutants include root growth inhibition, root histological alterations and ROS (H2O2, O2●ˉ), and RNS (ONOOˉ) production. Also, SNP treatments mitigate both the root increase in root IAA levels and the IAA alteration in distribution monitored by the OsDR5::GUS system due to the toxic metal exposure. Notably, the SNP-induced mitigation of the IAA homeostasis altered by the pollutants does not involve changes in the expression of OsYUCCA1 and ASA2 IAA-biosynthetic genes. Taken together, the results highlight a mitigating role of NO in the rice root system, which is pollutant-specific, and involves the interaction of the signal molecule with both IAA and brassinosteroids at different (i.e., transport, levels, distribution) and multiple levels (i.e., transcriptional/post-translational levels). The research is supported by Progetti Ateneo Sapienza University of Rome, grant number: RG120172B773D1FF

Keywords: arsenic, auxin, cadmium, nitric oxide, rice, root system

Procedia PDF Downloads 61
793 Anti-Neuroinflammatory and Anti-Apoptotic Efficacy of Equol, against Lipopolysaccharide Activated Microglia and Its Neurotoxicity

Authors: Lalita Subedi, Jae Kyoung Chae, Yong Un Park, Cho Kyo Hee, Lee Jae Hyuk, Kang Min Cheol, Sun Yeou Kim

Abstract:

Neuroinflammation may mediate the relationship between low levels of estrogens and neurodegenerative disease. Estrogens are neuroprotective and anti-inflammatory in neurodegenerative disease models. Due to the long term side effects of estrogens, researches have been focused on finding an effective phytoestrogens for biological activities. Daidzein present in soybeans and its active metabolite equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman) bears strong antioxidant and anticancer showed more potent anti-inflammatory and neuroprotective role in neuroinflammatory model confirmed its in vitro activity with molecular mechanism through NF-κB pathway. Three major CNS cells Microglia (BV-2), Astrocyte (C6), Neuron (N2a) were used to find the effect of equol in inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), MAPKs signaling proteins, apoptosis related proteins by western blot analysis. Nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by the Gries method and ELISA, respectively. Cytokines like tumor necrosis factor-α (TNF-α) and IL-6 were also measured in the conditioned medium of LPS activated cells with or without equol. Equol inhibited the NO production, PGE-2 production and expression of COX-2 and iNOS in LPS-stimulated microglial cells at a dose dependent without any cellular toxicity. At the same time Equol also showed promising effect in modulation of MAPK’s and nuclear factor kappa B (NF-κB) expression with significant inhibition of the production of proinflammatory cytokine like interleukin -6 (IL-6), and tumor necrosis factor -α (TNF-α). Additionally, it inhibited the LPS activated microglia-induced neuronal cell death by downregulating the apoptotic phenomenon in neuronal cells. Furthermore, equol increases the production of neurotrophins like NGF and increase the neurite outgrowth as well. In conclusion the natural daidzein metabolite equol are more active than daidzein, which showed a promising effectiveness as an anti-neuroinflammatory and neuroprotective agent via downregulating the LPS stimulated microglial activation and neuronal apoptosis. This work was supported by Brain Korea 21 Plus project and High Value-added Food Technology Development Program 114006-4, Ministry of Agriculture, Food and Rural Affairs.

Keywords: apoptosis, equol, neuroinflammation, phytoestrogen

Procedia PDF Downloads 349
792 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 437
791 Preliminary Phytopharmacological Evaluation of Methanol and Petroleum Ether Extracts of Selected Vegetables of Bangladesh

Authors: A. Mohammad Abdul Motalib Momin, B. Sheikh Mohammad Adil Uddin, C. Md Mamunur Rashid, D. Sheikh Arman Mahbub, E. Mohammad Sazzad Rahman, F. Abdullah Faruque

Abstract:

The present study was designed to investigate the antioxidant and cytotoxicity potential of methanol and pet ether extracts of the Lagenaria siceraria (LM, LP), Cucumis sativus (CSM, CSP), Cucurbita maxima (CMM, CMP) plants. For the phytochemical screening, crude extract was tested for the presence of different chemical groups. In Lagenaria siceraria the following groups were identified: alkaloids, steroids, glycosides and saponins for methanol extract and alkaloids, steroids, glycosides, tannins and saponins are for pet ether extract. Glycosides, steroids, alkaloids, saponins and tannins are present in the methanol extract of Cucumis sativus; the pet ether extract has the alkaloids, steroids and saponins. Glycosides, steroids, alkaloids, saponins and tannins are present in both the methanolic and pet ether extract of Cucurbita maxima. In vitro antioxidant activity of the extracts were performed using DPPH radical scavenging, nitric oxide (NO) scavenging, total antioxidant capacity, total phenol content, total flavonoid content, and Cupric Reducing Antioxidant Capacity assays. The most prominent antioxidant activity was observed with the CSM in the DPPH free radical scavenging test with an IC50 value of 1667.23±11.00271 μg/ml as opposed to that of standard ascorbic acid (IC50 value of 15.707± 1.181 μg/ml.) In total antioxidant capacity method, CMP showed the highest activity (427.81±11.4 mg ascorbic acid/g). The total phenolic and flavonoids content were determined by Folin-Ciocalteu Reagent and aluminium chloride colorimetric method, respectively. The highest total phenols and total flavonoids content were found in CMM and LP with the value of 79.06±16.06 mg gallic acid/g & 119.0±1.41 mg quercetin/g, respectively. In nitric oxide (NO) scavenging the most prominent antioxidant activity was observed in CMM with an IC50 value of 8.119± 0.0036 μg/ml. The Cupric reducing capacity of the extracts was strong and dose dependent manner and CSM showed lowest reducing capacity. The cytotoxicity was determined by Brine shrimp lethality test and among these extracts most potent cytotoxicity was shown by CMM with LC50 value 16.98 µg/ml. The obtained results indicate that the investigated plants could be potential sources of natural antioxidants and can be used for various types of diseases.

Keywords: antioxidant, cytotoxicity, methanol, petroleum ether

Procedia PDF Downloads 555
790 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, resovist, field strength, relaxivity, signal intensity

Procedia PDF Downloads 339
789 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 446
788 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars

Authors: Zeki Kara, Kevser Yazar

Abstract:

Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.

Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.

Procedia PDF Downloads 152
787 Synthesis of Iron Oxide Doped Zeolite: An Antimicrobial Nanomaterial for Drinking Water Purification Applications

Authors: Muhammad Zeeshan, Rabia Nazir, Lubna Tahir

Abstract:

Low cost filter based on iron doped zeolite (Fe-Z) and pottery clay was developed for an effective and efficient treatment of the drinking water contaminated with microbes. Fe-Z was characterized using powder XRD, SEM and EDX and shown to have average particle size of 49 nm with spongy appearance. The simulated samples of water self-contaminated with six microbes (S. typhi, B. subtilus, E. coli, S. aures, K. pneumoniae, and P. aeruginosa) after treatment with Fe-Z indicated effective removal of all the microbes in less than 30 min. Equally good results were obtained when actual drinking water samples, totally unfit for human consumption, were treated with Fe-Z.

Keywords: iron doped zeolite, biological and chemical treatment, drinking water

Procedia PDF Downloads 426
786 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air

Authors: Tobias Schnabel

Abstract:

Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.

Keywords: naphthalene, titandioxide, indoor air, photocatalysis

Procedia PDF Downloads 130
785 Friction and Wear Characteristics of Diamond Nanoparticles Mixed with Copper Oxide in Poly Alpha Olefin

Authors: Ankush Raina, Ankush Anand

Abstract:

Plyometric training is a form of specialised strength training that uses fast muscular contractions to improve power and speed in sports conditioning by coaches and athletes. Despite its useful role in sports conditioning programme, the information about plyometric training on the athletes cardiovascular health especially Electrocardiogram (ECG) has not been established in the literature. The purpose of the study was to determine the effects of lower and upper body plyometric training on ECG of athletes. The study was guided by three null hypotheses. Quasi–experimental research design was adopted for the study. Seventy-two university male athletes constituted the population of the study. Thirty male athletes aged 18 to 24 years volunteered to participate in the study, but only twenty-three completed the study. The volunteered athletes were apparently healthy, physically active and free of any lower and upper extremity bone injuries for past one year and they had no medical or orthopedic injuries that may affect their participation in the study. Ten subjects were purposively assigned to one of the three groups: lower body plyometric training (LBPT), upper body plyometric training (UBPT), and control (C). Training consisted of six plyometric exercises: lower (ankle hops, squat jumps, tuck jumps) and upper body plyometric training (push-ups, medicine ball-chest throws and side throws) with moderate intensity. The general data were collated and analysed using Statistical Package for Social Science (SPSS version 22.0). The research questions were answered using mean and standard deviation, while paired samples t-test was also used to test for the hypotheses. The results revealed that athletes who were trained using LBPT had reduced ECG parameters better than those in the control group. The results also revealed that athletes who were trained using both LBPT and UBPT indicated lack of significant differences following ten weeks plyometric training than those in the control group in the ECG parameters except in Q wave, R wave and S wave (QRS) complex. Based on the findings of the study, it was recommended among others that coaches should include both LBPT and UBPT as part of athletes’ overall training programme from primary to tertiary institution to optimise performance as well as reduce the risk of cardiovascular diseases and promotes good healthy lifestyle.

Keywords: boundary lubrication, copper oxide, friction, nano diamond

Procedia PDF Downloads 106
784 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal

Authors: Hakimeh Sharififard, Mansooreh Soleimani

Abstract:

In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.

Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich

Procedia PDF Downloads 440
783 Influence of Acceptor Dopant on the Physicochemical and Transport Properties of Textured BaCe0.5Zr0.3ln0.2O3−Δ Materials (Ln = Yb, Y, Cd, Sm, Nd)

Authors: J. Lyagaeva, D. Medvedev, A. Brouzgou, A. Demin, P. Tsiakaras

Abstract:

The investigation of highly conductive and chemically stable electrolytes for solid oxide fuel cells (SOFC) is a necessity. The aim of the present work is to study the influence of acceptor dopant on the functional properties of textured BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Y, Gd, Sm, Nd) ceramics. The X-Ray diffraction analysis, scanning electron microscopy, dilatometry and 4-probe dc method of conductivity measurements were used. It was found that the mean grain size of ceramics increases (from 1.4 to 3.2 μm), thermal expansion coefficient grows (from 7.6•10–6 to 10.7•10–6 К–1), but ionic conductivity decreases (from 14 to 3 mS cm–1 at 900°С), when ionic radii of impurity acceptor increases from 0.868 Å (Yb3+) to 0.983 Å (Nd3+).

Keywords: acceptor dopant, crystal structure, proton-conducting, SOFC

Procedia PDF Downloads 357
782 Activated Carbons Prepared from Date Pits for Hydrogen Storage

Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso

Abstract:

In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.

Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption

Procedia PDF Downloads 544
781 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy

Authors: Van Tran Thi Thuy, Dukjoon Kim

Abstract:

A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.

Keywords: magnetic, nano, PNIPAM, polysuccinimide

Procedia PDF Downloads 396
780 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer

Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah

Abstract:

In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.

Keywords: perovskite, mesoscopic, hysteresis, toluene air

Procedia PDF Downloads 153
779 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 367
778 In vitro Study of Inflammatory Gene Expression Suppression of Strawberry and Blackberry Extracts

Authors: Franco Van De Velde, Debora Esposito, Maria E. Pirovani, Mary A. Lila

Abstract:

The physiology of various inflammatory diseases is a complex process mediated by inflammatory and immune cells such as macrophages and monocytes. Chronic inflammation, as observed in many cardiovascular and autoimmune disorders, occurs when the low-grade inflammatory response fails to resolve with time. Because of the complexity of the chronic inflammatory disease, major efforts have focused on identifying novel anti-inflammatory agents and dietary regimes that prevent the pro-inflammatory process at the early stage of gene expression of key pro-inflammatory mediators and cytokines. The ability of the extracts of three blackberry cultivars (‘Jumbo’, ‘Black Satin’ and ‘Dirksen’), and one strawberry cultivar (‘Camarosa’) to inhibit four well-known genetic biomarkers of inflammation: inducible nitric oxide synthase (iNOS), cyclooxynase-2 (Cox-2), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in an in vitro lipopolysaccharide-stimulated murine RAW 264.7 macrophage model were investigated. Moreover, the effect of latter extracts on the intracellular reactive oxygen species (ROS) and nitric oxide (NO) production was assessed. Assay was conducted with 50 µg/mL crude extract concentration, an amount that is easily achievable in the gastrointestinal tract after berries consumption. The mRNA expression levels of Cox-2 and IL-6 were reduced consistently (more than 30%) by extracts of ‘Jumbo’ and ‘Black Satin’ blackberries. Strawberry extracts showed high reduction in mRNA expression levels of IL-6 (more than 65%) and exhibited moderate reduction in mRNA expression of Cox-2 (more than 35%). The latter behavior mirrors the intracellular ROS production of the LPS stimulated RAW 264.7 macrophages after the treatment with blackberry ‘Black Satin’ and ‘Jumbo’, and strawberry ‘Camarosa’ extracts, suggesting that phytochemicals from these fruits may play a role in the health maintenance by reducing oxidative stress. On the other hand, effective inhibition in the gene expression of IL-1β and iNOS was not observed by any of blackberry and strawberry extracts. However, suppression in the NO production in the activated macrophages among 5–25% was observed by ‘Jumbo’ and ‘Black Satin’ blackberry extracts and ‘Camarosa’ strawberry extracts, suggesting a higher NO suppression property by phytochemicals of these fruits. All these results suggest the potential beneficial effects of studied berries as functional foods with antioxidant and anti-inflammatory roles. Moreover, the underlying role of phytochemicals from these fruits in the protection of inflammatory process will deserve to be further explored.

Keywords: cyclooxygenase-2, functional foods, interleukin-6, reactive oxygen species

Procedia PDF Downloads 220
777 The Role of Microbe-Microplastics Associations in Marine Nematode Feeding Behaviors

Authors: A. Ridall, J. Ingels

Abstract:

Microplastics (MPs; < 5 mm) have been cited as exceptionally detrimental to marine organisms and ocean health. They can carry other pollutants and abundant microbes that can serve as food for other organisms. Their small particle size and high abundance means that non-discriminatory feeders may ingest MPs involuntarily and microbial colonization of the particles (a niche coined ‘Plastisphere’) could facilitate particle ingestion. To assess how marine nematodes, the most abundant member of the meiofauna (32-500 um), are affected by microbe-MP associations, an experiment was conducted with three MP concentrations (low, medium, and expected high values of MPs in a local bay system), and two levels of microbe-MP associations (absence or presence). MPs were introduced into sediment microcosms and treatments were removed at three distinct time points (0, 3, and 7 days) to measure mean MP consumption/individual nematode. The quantitative results from this work should inform on microbial facilitation of MP ingestion and MP effects on seafloor ecology. As most MP feeding experiments use straight-from-package or sterile MPs, this work represents an important step in realizing the effects of MPs and their plastispheres in coastal sediments where they likely accumulate microbial biofilms prior to their ingestion by marine metazoans. Furthermore, the results here convey realistic effects of MPs on faunal behaviors, as the MP concentrations used are based on field measurements rather than artificially high levels.

Keywords: ecosystem function, microbeads, plastisphere, pollution, polyethylene

Procedia PDF Downloads 78