Search results for: extracellular lignin- degrading enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1202

Search results for: extracellular lignin- degrading enzymes

302 Possible Management of Acute Liver Failure Caused Experimentally by Thioacetamide Through a Wide Range of Nano Natural Anti-Inflammatory And Antioxidants Compounds [Herbal Approach]

Authors: Sohair Hassan, Olfat Hammam, Sahar Hussein, Wessam Magdi

Abstract:

Objective: Acute liver failure (ALF) is a clinical condition with an unclear history of pathophysiology, making it a challenging task for scientists to reverse the disease in its initial phase and to help the liver re-function customary: this study aimed to estimate the hepatoprotective effects of Punica granatum Lpeel and Pistacia atlantica leaves as a multi-rich antioxidants ingredients either in their normal and/or in their nanoforms against thioacetamide induced acute liver failure in a rodent model. Method: Male Wistar rats (n=60) were divided into six equal groups, the first group employed as a control; The second group administered a dose of 350 mg /Kg/ b.w of thioacetamide (TAA)-IP, from the third to the sixth group received TAA + [2mls / 100 g b.w/d] of aqueous extracts of Punica granatum L and Pistacia atlantica either in their normal and/or Nano forms consecutively for (14 days) Results: Recorded significant elevation in liver enzymes, lipid profiles, LPO (p= 0.05) and NO with a marked significant decrease in GSH and SOD accompanied by an elevation in inflammatory cytokine (IL6, TNF-α, and AFP) in addition to a noticeable increase in HSP70 level & degradation in DNA respectively in TAA challenged group. However significant and subsequent amelioration of most of the impaired markers was observed with ip nano treatment of both extracts. Conclusion: The current results highlighted the high performance of both plant nano extracts and their hepatoprotective impact and their possible therapeutic role in the amelioration of TAA induced acute liver failure in experimental animals.

Keywords: acute liver failure HPLC, IL6, nano extracts, thioacetamide, TNF-α

Procedia PDF Downloads 206
301 Stimuli-Responsive Zwitterionic Dressings for Chronic Wounds Management

Authors: Konstans Ruseva, Kristina Ivanova, Katerina Todorova, Margarita Gabrashanska, Tzanko Tzanov, Elena Vassileva

Abstract:

Zwitterionic polymers (ZP) are well-known with their ultralow biofouling. They are successfully competing with poly(ethylene glycols) (PEG), which are considered as the “golden standard” in this respect. These unique properties are attributed to their strong hydration capacity, defined by the dipole-dipole interactions, arising between the ZP pendant groups as well as to the dipoles interaction with water molecules. Beside, ZP are highly resistant to bacterial adhesion thus ensuring an excellent anti-biofilm formation ability. Moreover, ZP are able to respond upon external stimuli such as temperature, pH, salt concentration changes which in combination with their anti-biofouling effect render this type of polymers as materials with a high potential in biomedical applications. The present work is focused on the development of zwitterionic hydrogels for efficient treatment of highly exudating and hard-to-heal chronic wounds. To this purpose, two types of ZP networks with different crosslinking degree were synthesized - polysulfobetaine (PSB) and polycarboxybetaine (PCB) ones. They were characterized in terms of their physico-mechanical properties, e.g. microhardness, swelling ability, smart behaviour. Furthermore, the potential of ZP networks to resist biofilm formation towards Staphylococcus aureus and Escherichia coli was studied. Their ability to reduce the high levels of myeloperoxidase and metalloproteinase, two enzymes that are part of the chronic wounds enviroenment, was revealed. Moreover, the in vitro cytotoxic assessment of PSB and PCB networks along with their in vivo performance in rats was also studied to reveal their high biocompatibility.

Keywords: absorption properties, biocompatibility, enzymatic inhibition activity, wound healing, zwitterionic polymers

Procedia PDF Downloads 197
300 Enhanced Anti-Dermatophytic Effect of Nanoparticles Stimulated by Laser and Cold Plasma Techniques

Authors: Salama A. Ouf, Amera A. El-Adly, Abdelaleam H. Mohamed

Abstract:

Dermatophytosis is the infection of keratinized tissues such as hair, nail and the stratum corneum of the skin by dermatophytic fungi. Infection is generally cutaneous and restricted to the non-living cornified layers because of the inability of the fungi to penetrate the deeper tissues or organs of immunocompetent hosts. In Saudi Arabia, Onychomycosis is the most frequent infection (40.3%), followed by tinea capitis (21.9%), tinea pedis (16%), tinea cruris (15.1%), and tinea corporis (6.7%). Several azole compounds have been tried to control dermatophytic infection, however, the azole-containing medicines may interfere with the activity of hepatic microsomal enzymes, sex and thyroid hormones, and testosterone biosynthesis. In this research, antibody-conjugated nanoparticles stimulated by cold plasma and laser were evaluated in vitro against some dermatophytes isolated from the common types of tinea. Different types of nanomaterials were tested but silver nanoparticles (AgNPs) were proved to be most effective against the dermatophytes under test. The use of cold plasma coupled with antibody-conjugated nano-particles has severe impact on dermatophytes where the inhibition of growth, spore germination keratinase activity was more than 88% in the case of Trichophyton rubrum, T. violaceum, Microsprum canis and M. gypseum. Complete inhibition of growth for all dermatophytes was brought about by the interaction of conjugated nanoparticles, with cold plasma and laser treatment. The in vivo test with inoculated guinea pigs achieved promising results where the recovery from the infection reached 95% in the case of M. canis –inoculated pigs treated with AgNPs pretreated with cold plasma and laser.

Keywords: cold plasma, dermatophytes, laser, silver nanoparticles

Procedia PDF Downloads 367
299 Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria

Authors: Oluwatosin Adetola Arojojoye, Olajumoke Olufunlayo Alao, Philip Odigili

Abstract:

This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river.

Keywords: antioxidant, lipid peroxidation, Clarias gariepinus, Eleyele River

Procedia PDF Downloads 530
298 Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom

Authors: Maryam Ghamsari, Mitchell Nye-Wood, Kelvin Wang, Angela Juhasz, Michelle Colgrave, Don Otter, Jun Lu, Nazimah Hamid, Thao T. Le

Abstract:

Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components.

Keywords: honeybee venom, proteomics, bioactivity, fractionation, swath-ms, melittin, phospholipase a2, new zealand, immunomodulatory, antioxidant

Procedia PDF Downloads 40
297 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 158
296 The Gaze; Objectification of the Surrogate Mother in Cross-Border Surrogacy: An Empirical Study Applied to Surrogacy Facilitators

Authors: Yingyi Luo

Abstract:

Cross-border surrogacy is seen by many as a market in which women are bought and sold commodities at risk of trafficking. A surrogate can be framed as either a fully acknowledged subject, with whom intended parents engage in cross-border surrogacy—or as a tool utilized by intended parents and surrogacy facilitators in the furtherance of their own objectives. In order to identify which frame prevails, this paper applies subjectivity theory to an empirical study of cross-border surrogacy facilitated by facilitators in Australia analysing interviews with surrogate agents, counsellors and lawyers, and observations at trade show. The aim of the paper is to advance understanding of the dynamics of the relationship between intended parents, surrogates, and surrogacy facilitators by collecting new data and applying unique framework. As dominant players, surrogacy facilitators have a significant impact on determining the nature of cross-border surrogacy. However, little is known concerning the manner in which facilitators influence the inter-subjectivity between surrogate mothers and intended parents. Thus, this paper intends to identify how facilitators depict surrogate mothers, the degree to which their perspectives bear upon both the subjectivity of the surrogate mother and the relationship of intended parents with surrogate mothers. For the purpose of introducing and developing this framework in the context of cross-border surrogacy, this paper borrows from the work of theorists not often mentioned in bioethics, including Jacques Lacan, Marco Cavallaro, Michel Foucault, and others. It also applies the concept of 'the gaze' along with the dynamic of 'self' and 'other' to the cross-border surrogacy arrangement. Applying the concept of the gaze can provide a new way to interpret the power dynamic that plays out among surrogacy facilitators, intended parents, and surrogates within the commercial surrogacy arrangement and how the subjectivity is produced through the power. Viewing the relationships between the players in cross-border surrogacy through the lens of gaze theory, this paper finds that, in cross-border surrogacy, due to the structural power imbalance, affluent intended parents and surrogacy facilitators are possessors of the gaze, while surrogate mothers are under the thrall of the gaze. Specifically, facilitators frame surrogate mothers' reproductive abilities as commodities that intended parents can purchase to fulfil their urgent need to have children and experience full subjectivity, and they take a cut of the money that paid by intended parents. Therefore, commodification of the body results in degrading a surrogate mother (the object), reifying her as no more than a walking womb (the other), a process which is highly detrimental to the self of surrogate mothers. This relationship, formalized through contractual means, allows intended parents and facilitators to take advantage of surrogate mothers in the furtherance of their own objectives. This argument is enriched by new data from interviews and observations that provide nuance to this understanding of inter-subjectivity.

Keywords: cross-border surrogacy, facilitators, self, surrogate mothers

Procedia PDF Downloads 132
295 Use of High Hydrostatic Pressure as an Alternative Preservation Method in Camels Milk

Authors: Fahad Aljasass, Hamza Abu-Tarboush, Salah Aleid, Siddig Hamad

Abstract:

The effects of different high hydrostatic pressure treatments on the shelf life of camel’s milk were studied. Treatments at 300 to 350 MPa for 5 minutes at 40°C reduced microbial contamination to levels that prolonged the shelf life of refrigerated (3° C) milk up to 28 days. The treatment resulted in a decrease in the proteolytic activity of the milk. The content of proteolytic enzymes in the untreated milk sample was 4.23 µM/ml. This content decreased significantly to 3.61 µM/ml when the sample was treated at 250 MPa. Treatment at 300 MPa decreased the content to 3.90 which was not significantly different from the content of the untreated sample. The content of the sample treated at 350 MPa dropped to 2.98 µM/ml which was significantly lower than the contents of all other treated and untreated samples. High pressure treatment caused a slight but statistically significant increase in the pH of camel’s milk. The pH of the untreated sample was 6.63, which increased significantly to 6.70, in the samples treated at 250 and 350 MPa, but insignificantly in the sample treated at 300 MPa. High pressure treatment resulted in some degree of milk fat oxidation. The thiobarbituric acid (TBA) value of the untreated sample was 0.86 mg malonaldehyde/kg milk. This value remained unchanged in the sample treated at 250 MPa, but then it increased significantly to 1.25 and 1.33 mg/kg in the samples treated at 300 and 350 MPa, respectively. High pressure treatment caused a small increase in the greenness (a* value) of camel’s milk. The value of a* was reduced from -1.17 for the untreated sample to -1.26, -1.21 and -1.30 for the samples treated at 250, 300 and 350 MPa, respectively. Δa* at the 250 MPa treatment was -0.09, which then decreased to -0.04 at the 300 MPa treatment to increase again to -0.13 at the 350 MPa treatment. The yellowness (b* value) of camel’s milk increased significantly as a result of high pressure treatment. The b* value of the untreated sample was 1.40, this value increased to 2.73, 2.31 and 2.18 after treatments at 250, 300 and 350 MPa, respectively. The Δb* value was +1.33 at the treatment 250 MPa, decreased to +0.91 at 300 MPa and further to +0.78 at 350 MPa. The pressure treatment caused slight effect on color, slight decrease in protease activity and a slight increase in the oxidation products of lipids.

Keywords: high hydrostatic pressure, camel’s milk, mesophilic aerobic bacteria, clotting, protease

Procedia PDF Downloads 268
294 Protective Effect of Saponin Extract from the Root of Garcinia kola (Bitter Kola) against Paracetamol-Induced Hepatotoxicity in Albino Rats

Authors: Alli Smith Yemisi Rufina, Adanlawo Isaac Gbadura

Abstract:

Liver disorders are one of the major problems of the world. Despite its frequent occurrence, high morbidity, and high mortality, its medical management is currently inadequate. This study was designed to evaluate the Hepatoprotective effect of saponin extract of the root of Garcinia kola on the integrity of the liver of paracetamol induced Wistar albino rats. Twenty-five male adult Wistar albino rats were divided into five (5) groups. Group I, was the Control group that received distilled water only, group II was the negative control that received 2 g/kg of paracetamol on the 13th day, and group III, IV, and V were pre-treated with 100, 200 and 400 mg/kg of the saponin extract before inducing the liver damage on the 13th day with 2 g/kg of paracetamol. Twenty-four hours after administration, the rats were sacrificed, and blood samples were collected. The serum Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline Phosphatase (ALP) activities, Bilirubin and Conjugated Bilirubin, Glucose and Protein concentrations were evaluated. The liver was fixed immediately in Formalin and was processed and stained with Haematoxylin and Eosin (H&E). Administration of saponin extract from the root of Garcinia kola significantly decreased paracetamol induced elevated enzymes in the test group. Also, histological observations showed that saponin extract of the root of Garcinia kola exhibited a significant liver protection against the toxicant as evident by the cells trying to return to normal. Saponin extract from the root of Garcinia kola indicated a protection of the structural integrity of the hepatocytic cell membrane and regeneration of the damaged liver.

Keywords: hepatoprotective, liver damage, Garcinia kola, saponin, paracetamol

Procedia PDF Downloads 261
293 Histopathological and Biochemical Investigations of Protective Role of Honey in Rats with Experimental Aflatoxicosis

Authors: Turan Yaman, Zabit Yener, Ismail Celik

Abstract:

The aim of this study was to investigate the antioxidant properties and protective role of honey, considered a part of traditional medicine, against carcinogen chemical aflatoxin (AF) exposure in rats, which were evaluated by histopathological changes in liver and kidney, measuring level of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)], and lipid peroxidation content in liver, erythrocyte, brain, kidney, heart and lungs. For this purpose, a total of eighteen healthy Sprague-Dawley rats were randomly allocated into three experimental groups: A (Control), B (AF-treated) and C (AF+honey-treated). While rats in group A were fed with a diet without AF, B, and C groups received 25 µg of AF/rat/day, where C group additionally received 1 mL/kg of honey by gavage for 90 days. At the end of the 90-day experimental period, we found that the honey supplementation decreased the lipid peroxidation and the levels of enzyme associated with liver damage, increased enzymatic and non-enzymatic antioxidants in the AF+honey-treated rats. Hepatoprotective and nephroprotective effects of honey is further substantiated by showing almost normal histological architecture in AF+honey-treated group, compared to degenerative changes in the liver and kidney of AF-treated rats. Additionally, honey supplementation ameliorated antioxidant defense systems and lipid peroxidation content in other tissues of AF+honey-treated rats. In conclusion, the present study indicates that honey has a hepatoprotective and nephroprotective effect in rats with experimental aflatoxicosis due to its antioxidant activity.

Keywords: aflatoxicosis, honey, histopathology, malondialdehyde, antioxidant, rat

Procedia PDF Downloads 334
292 Thinking Differently about Diversity: A Literature Review

Authors: Natalie Rinfret, Francine Tougas, Ann Beaton

Abstract:

Conventions No. 100 and 111 of the International Labor Organization, passed in 1951 and 1958 respectively, established the principles of equal pay for men and women for work of equal value and freedom from discrimination in employment. Governments of different countries followed suit. For example, in 1964, the Civil Rights Act was passed in the United States and in 1972, Canada ratified Convention 100. Thus, laws were enacted and programs were implemented to combat discrimination in the workplace and, over time, more than 90% of the member countries of the International Labour Organization have ratified these conventions by implementing programs such as employment equity in Canada aimed at groups recognized as being discriminated against in the labor market, including women. Although legislation has been in place for several decades, employment discrimination has not gone away. In this study, we pay particular attention to the hidden side of the effects of employment discrimination. This is the emergence of subtle forms of discrimination that often fly under the radar but nevertheless, have adverse effects on the attitudes and behaviors of members of targeted groups. Researchers have identified two forms of racial and gender bias. On the one hand, there are traditional prejudices referring to beliefs about the inferiority and innate differences of women and racial minorities compared to White men. They have the effect of confining these two groups to job categories suited to their perceived limited abilities and can result in degrading, if not violent and hateful, language and actions. On the other hand, more subtle prejudices are more suited to current social norms. However, this subtlety harbors a conflict between values of equality and remnants of negative beliefs and feelings toward women and racial minorities. Our literature review also takes into account an overlooked part of the groups targeted by the programs in place, senior workers, and highlights the quantifiable and observable effects of prejudice and discriminatory behaviors in employment. The study proposes a hybrid model of interventions, taking into account the organizational system (employment equity practices), discriminatory attitudes and behaviors, and the type of leadership to be advocated. This hybrid model includes, in the first instance, the implementation of initiatives aimed at both promoting employment equity and combating discrimination and, in the second instance, the establishment of practices that foster inclusion, the full and complete participation of all, including seniors, in the mission of their organization.

Keywords: employment discrimination, gender bias, the hybrid model of interventions, senior workers

Procedia PDF Downloads 221
291 Exploring the Safety of Sodium Glucose Co-Transporter-2 Inhibitors at the Imperial College London Diabetes Centre, UAE

Authors: Raad Nari, Maura Moriaty, Maha T. Barakat

Abstract:

Introduction: Sodium-glucose co-transporter-2 (SGLT2) inhibitors are a new class of oral anti-diabetic drugs with a unique mechanism of action. They are used to improve glycaemic control in adults with type 2 diabetes by enhancing urinary glucose excretion. In the UAE, there has been certainly an increased use of these medications. As with any new medication, there are safety considerations related to their use in patients with type two diabetes. A retrospective study was conducted at the three main centres of the Imperial College London Diabetes Centre. Methodology: All patients in electronic database (Diamond) from October 2014 to October 2017 were included with a minimum of six months usage of sodium glucose co-transporter inhibitors that comprise canagliflozin, dapagliflozin and empagliflozin. There were 15 paired sample biochemical and clinical correlations. The analysis was done at the start of the study, three months and six months apart. SPSS version 24 was used for this study. Conclusion: This study of sodium glucose co-transporter-2 inhibitors used showed significant reductions in weight, glycated haemoglobin A1C, systolic and diastolic blood pressures. As the case with systematic reviews, there were similar changes in liver enzymes, raised total cholesterol, low density lipopoptein and high density lipoprotein. There was slight improvement in estimated glomerular filtration rate too. Our analysis also showed that they increased in the incidence of urinary tract symptoms and incidence of urinary tract infections.

Keywords: SGLT2 inhibitors dapagliflozin empagliflozin canagliflozin, adverse effects, amputation diabetic ketoacidosis DKA, urinary tract infection

Procedia PDF Downloads 229
290 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress

Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck

Abstract:

Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.

Keywords: ocean acidification, sea bass, pH climate change, salinity

Procedia PDF Downloads 227
289 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones

Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić

Abstract:

Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.

Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials

Procedia PDF Downloads 250
288 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 497
287 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System

Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa

Abstract:

G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.

Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics

Procedia PDF Downloads 102
286 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 86
285 Polymerization of Epsilon-Caprolactone Using Lipase Enzyme for Medical Applications

Authors: Sukanya Devi Ramachandran, Vaishnavi Muralidharan, Kavya Chandrasekaran

Abstract:

Polycaprolactone is polymer belonging to the polyester family that has noticeable characteristics of biodegradability and biocompatibility which is essential for medical applications. Polycaprolactone is produced by the ring opening polymerization of the monomer epsilon-Caprolactone (ε-CL) which is a closed ester, comprising of seven-membered ring. This process is normally catalysed by metallic components such as stannous octoate. It is difficult to remove the catalysts after the reaction, and they are also toxic to the human body. An alternate route of using enzymes as catalysts is being employed to reduce the toxicity. Lipase enzyme is a subclass of esterase that can easily attack the ester bonds of ε-CL. This research paper throws light on the extraction of lipase from germinating sunflower seeds and the activity of the biocatalyst in the polymerization of ε-CL. Germinating Sunflower seeds were crushed with fine sand in phosphate buffer of pH 6.5 into a fine paste which was centrifuged at 5000rpm for 10 minutes. The clear solution of the enzyme was tested for activity at various pH ranging from 5 to 7 and temperature ranging from 40oC to 70oC. The enzyme was active at pH6.0 and at 600C temperature. Polymerization of ε-CL was done using toluene as solvent with the catalysis of lipase enzyme, after which chloroform was added to terminate the reaction and was washed in cold methanol to obtain the polymer. The polymerization was done by varying the time from 72 hours to 6 days and tested for the molecular weight and the conversion of the monomer. The molecular weight obtained at 6 days is comparably higher. This method will be very effective, economical and eco-friendly to produce as the enzyme used can be regenerated as such at the end of the reaction and can be reused. The obtained polymers can be used for drug delivery and other medical applications.

Keywords: lipase, monomer, polycaprolactone, polymerization

Procedia PDF Downloads 296
284 Evaluating the Hepato-Protective Activities of Combination of Aqueous Extract of Roots of Tinospora cordifolia and Rhizomes of Curcuma longa against Paracetamol Induced Hepatic Damage in Rats

Authors: Amberkar Mohanbabu Vittalrao, Avin, Meena Kumari Kamalkishore, Padmanabha Udupa, Vinaykumar Bavimane, Honnegouda

Abstract:

Objective: To evaluate the hepato-protective activity of Tinospora cordiofolia (Tc) against paracetamol induced hepatic damage in rats. Methods: The plant stem (test drug) was procured locally, shade dried, powdered and extracted with water. Silymarin was used as standard hepatoprotective drugs and 2% gum acacia as a control (vehicle) against paracetamol (PCT) induced hepatotoxicity. Results and Discussion: The hepato-protective activity of aqueous stem extract was assessed by paracetamol induced hepatotoxicity preventive model in rats. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP and lipid peroxides were tested in both paracetamol treated and untreated groups. Paracetamol (3g/kg) had enhanced the AST, ALT, ALP and the lipid peroxides in the serum. Treatment of silymarin and aqueous stem extract of Tc (200 and 400mg/kg) extract showed significant hepatoprotective activity by altering biochemical marker levels to the near normal. Preliminary phytochemical tests were done. Aqueous Tc extract showed presence of phenolic compound and flavonoids. Our findings suggested that Tc extract possessed hepatoprotective activity in a dose dependent manner. Conclusions: Tc was found to possess significant hepatoprotective property when treated with PCT. This was evident by decreasing the liver enzymes significantly when treated with PCT as compared to PCT only treated group (P < 0.05). Hence Tinospora cardiofolia could be a good, promising, preventive agent against PCT induced hepatotoxicity.

Keywords: Tinospora cardiofolia, hepatoprotection, paracetamol, silymarin

Procedia PDF Downloads 202
283 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 308
282 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 193
281 Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice

Authors: Kubra Dogan, Fatih Tornuk

Abstract:

Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice.

Keywords: heat treatment, phenolic content, shelf life, ultraviolet (UV-C), vegetable juice

Procedia PDF Downloads 210
280 Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains

Authors: M. D. Asemoloye, S. G. Jonathan, A. Rafiq, O. J. Olawuyi, D. O. Adejoye

Abstract:

Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil.

Keywords: Calmodulin gene, pesticide, RT-PCR, talaromyces, tolerance

Procedia PDF Downloads 225
279 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease

Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein

Abstract:

Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.

Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation

Procedia PDF Downloads 528
278 Effects of Copper Oxide Nanoparticles on the Growth Performance, Antioxidant Enzymes Activity and Gut Morphology of Broiler Chickens

Authors: Mohammad Nassiri, Farhad Ahmadi

Abstract:

This research was carried out to investigate the effects of copper oxide nanoparticles (nano-CuO) on performance and gut morphology of broiler chickens. A total of 240 one-day-old male chickens (Ross-308) were randomly divided in a completely randomized design, the inclusion of 4 groups of 60 birds with 4 replicates and 15 birds in each. Experimental diets were as follow: T1 control (basal diets, without nano-CuO but contain 9.1 mg Cu/kg from CuO), T2, T3, and T4 basal diet supplementation with 30, 60, and 90 mg nano-CuO/kg, respectively. Feed intake (FI) and gain weight as weekly recorded and on d 21 feed conversion ratio (FCR) were calculated. Furthermore, at the end of the trial (21 d), four birds per treatment (one bird/replicate) randomly selected and after removed blood samples, they slaughtered and then to the analysis of gut morphological. A segment (10 cm) from the middle part of duodenum and jejunum was removed and put in the formalin 10% (pH = 7). The results revealed that nano-CuO had significantly increased body weight (P = 0.029, but feed intake (P = 0.017), and feed conversion ratio (P = 0.031) decreased in the birds that fed 90 mg nano-CuO when compared to control and the other groups. Total antioxidant capacity (P = 0.041), superoxide dismutase (P = 0.036), and glutathione peroxidase (P = 0.048) were more in the birds fed diet inclusion of 60 and 90 mg nano-CuO (T4) than other treatments. The lowest malonaldehyde (MDA) level was observed in T3 (P = 0.23) and T4 (P = 0.028) decreased (P = 0.17). The villi height and villi height to crypt depth (VH/CD ratio) numerically increased (P = 0.09) in the bird fed 90 mg nano-CuO in comparison with other treatments. According to present results, it could be concluded that dietary nano-CuO improved performance parameters and antioxidant status of broiler chickens during starter period. As well, the optimum improvement observed in the birds fed diet inclusion of 90 mg nano-CuO/kg.

Keywords: antioxidant, broilers, copper, performance, nanoparticles

Procedia PDF Downloads 572
277 Ergosterol Regulated Functioning of Rubisco in Tomato

Authors: Prabir Kumar Paul, Joyeeta Mitra

Abstract:

Ergosterol, is an important fungal metabolite on phylloplane which is not synthesised by plants. However, the functional requirement of ergosterol to the plants is still an enigma. Being ubiquitously present in all plants except algae needs an insight into its physiological implication. The present study aimed at understanding if and how ergosterol influences the physiology of chloroplast particularly the activity of RuBisCo and carbonic anhydrase. The concept of the study was based on one of our earlier observation of enhanced Hills reaction in plants treated with fungal metabolites which contained ergosterol. The fungal metabolite treated plants had a significantly high concentration of photosynthetic pigments. Eight-week-old tomato plants raised under aseptic conditions at 25 + 10 C, 75 % relative humidity and 12 hour L/D photoperiod. Metabolites of Aspergillus niger and Fusarium oxysporum were sprayed on plants either singly or in a 1: 1 combination. A separate group of plants was also treated with 0.5, 1.0, 3.0, 5.0. 7.0 mg ergosterol / ml of n- heptane. Control plants were treated with sterile distilled water only. Plants were sampled at 24, 48, 72 and 96 hours of treatment. RuBisCo and carbonic anhydrase was estimated from sampled leaves. RuBisCo was separated on 1D SDS-PAGE and subjected to MALDI – TOF- TOF – MS analysis. The presence of ergosterol in fungal metabolites was confirmed. Fungal metabolites significantly enhanced the concentration and activity of RuBisCo and carbonic anhydrase. The Vmax activity of the enzymes was significantly high in metabolite treated plants. 1:1 mix of metabolite was more effective than when applied individually. Insilico analysis revealed, RuBisCo subunits had a binding site for ergosterol and in its presence affinity of Co2 to the enzyme increased by several folds. Invivo activity of RuBisCo was significantly elicited by ergosterol. Results of the present study indicate that ergosterol from phylloplane microfungi probably regulates the binding of Co2 to RuBisCo along with activity of carbonic anhydrase thereby modulating the physiology of choloroplast.

Keywords: carbonic anhydrase, ergosterol, phylloplane, RuBisCo

Procedia PDF Downloads 235
276 Rheological Properties of Red Beet Root Juice Squeezed from Ultrasounicated Red Beet Root Slices

Authors: M. Çevik, S. Sabancı, D. Tezcan, C. Çelebi, F. İçier

Abstract:

Ultrasound technology is the one of the non-thermal food processing method in recent years which has been used widely in the food industry. Ultrasound application in the food industry is divided into two groups: low and high intensity ultrasound application. While low intensity ultrasound is used to obtain information about physicochemical properties of foods, high intensity ultrasound is used to extract bioactive components and to inactivate microorganisms and enzymes. In this study, the ultrasound pre-treatment at a constant power (1500 W) and fixed frequency (20 kHz) was applied to the red beetroot slices having the dimension of 25×25×50 mm at the constant temperature (25°C) for different application times (0, 5, 10, 15 and 20 min). The red beet root slices pretreated with ultrasonication was squeezed immediately. The changes on rheological properties of red beet root juice depending on ultrasonication duration applied to slices were investigated. Rheological measurements were conducted by using Brookfield viscometer (LVDV-II Pro, USA). Shear stress-shear rate data was obtained from experimental measurements for 0-200 rpm range by using spindle 18. Rheological properties of juice were determined by fitting this data to some rheological models (Newtonian, Bingham, Power Law, Herschel Bulkley). It was investigated that the best model was Power Law model for both untreated red beet root juice (R2=0.991, χ2=0.0007, RMSE=0.0247) and red beetroot juice produced from ultrasonicated slices (R2=0.993, χ2=0.0006, RMSE=0.0216 for 20 min pre-treatment). k (consistency coefficient) and n (flow behavior index) values of red beetroot juices were not affected from the duration of ultrasonication applied to the slices. Ultrasound treatment does not result in any changes on the rheological properties of red beetroot juice. This can be explained by lack of ability to homogenize of the intensity of applied ultrasound.

Keywords: ultrasonication, rheology, red beet root slice, juice

Procedia PDF Downloads 407
275 Effects of in Ovo Injection of Royal Jelly on Hatchability, One-Day Old Chickens Quality, Total Antioxidant Status and Blood Lipoproteins

Authors: Amin Adeli, Maryam Zarei

Abstract:

Background and purpose: Royal jelly (RJ) is a natural product with anti-hyperlipidemic and antioxidant properties. In ovo administration of RJ may improve lipid profile and antioxidant properties. This study was conducted to evaluate, for first time, the effects of in ovo injection of the RJ on hatchability, one-day old chick quality, total antioxidant status and blood lipoproteins. Methods: 400 incubating eggs produced by Ross 308 strain (52 weeks of age in first stage of production) were prepared and assigned into 4 groups (n=100) and 4 replications per group (n=25). These 4 groups were injected by the following pattern: 1) 0.1 ml normal saline (control), 2) 0.1 mg RJ+0.1 ml normal saline, 3) 0.2 mg RJ+0.1 ml normal saline, and 4) 0.3 mg RJ+0.1 ml normal saline. Injections were performed using a laminar flow system Lipid profile, antioxidant properties, hatchability, and one-day old chicken quality were assessed. Results: The administration of RJ at concentration of 0.1increased the percentage of hatchability compared to concentration of 0.2 and control, significant differences have not been observed among groups for quality scores (P>0.05). The results showed that in ovo injection of the RJ did not have any significant effects on lipid profile; but administration of the RJ only decreased High-density lipoprotein (HDL cholesterol, HDL-C) (P<0.05). The results showed that injection of the RJ at concentration of 0.3 increased total antioxidant capacity (TAC) compared to control group (p<0.05). Injection of the RJ progressively increased gluthation peroxidase (GPx) activity (p<0.05). The results showed that injection of the RJ decreased superoxide dismutase (SOD) compared to control group (p<0.05). Conclusion: In ovo injection of the RJ at the highest concentration increased TAC and GPx, but it did not have significant effects on lipid profile. Future studies are needed to investigate the effects of the RJ on the above-mentioned mechanisms.

Keywords: antioxidant enzymes, chicken quality, hatchability, royal jelly

Procedia PDF Downloads 97
274 Molecular Mechanism on Inflammation and Antioxidant Role of Pterocarpus Marsupiumin in Experimental Hyperglycaemia

Authors: Leelavinothan Pari , Ayyasamy Rathinam

Abstract:

Diabetes mellitus (DM) is a major and growing public health problem throughout the world. Pterocarpus marsupium (Roxb.) (Family: Fabaceae) is widely used as a traditional medicine to treat various diseases including diabetes. However, the molecular mechanism of Pterocarpus marsupium has not been investigated so far. Two fractions (2.5% and 5%) of extract from the medicinal plant, Pterocarpus marsupium (PME) were conducted in a dose dependent manner in streptozotocin (45 mg/kg b.w.) induced type 2 diabetic rats. Each fraction of PME was administered to diabetic rats intragastrically at a dose of 50, 100 and 200 mg/kg b.w for 45 days. The effective dose 200 mg/kg b.w of 5% fraction was more pronounced in reducing the levels of blood glucose (95.65 mg/dL) and glycosylated hemoglobin (HbA1c) (0.41 mg/g Hb), and increasing the plasma insulin (16.20 µU/mL) level. Moreover, PME (200 mg/kg b.w) significantly ameliorated lipid peroxidation products (thiobarbituric reactive substances, lipid hydroperoxides) enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E and reduced glutathione) levels. The altered activities of the key enzymes of lipid metabolism along with the lipid profile in diabetic rats were significantly reverted to near normal levels by the administration of PME 5% 200 mg/kg b.w fraction. PME (200 mg/kg b.w) has the ability to reduce the inflammatory cytokines, such as TNF-α, IL-6 mRNA, as well as protein expression and apoptotic marker, such as caspase-3 enzyme in diabetic hepatic tissue. The above biochemical findings were also supported by histological studies such as improvement in pancreas and liver. Pterocarpus marsupium could effectively reduce the hyperglycemia, oxidative-stress, inflammation and hyperlipedimea in diabetic rats; hence it could be a useful drug in the management of diabetes without any side effects.

Keywords: diabetes mellitus, streptozotocin, Pterocarpus marsupium, lipid peroxidation, Antioxidants, inflammatory cytokines

Procedia PDF Downloads 376
273 Microalgae as Promising Biostimulants of Plant Tolerance Against Heavy Metals

Authors: Soufiane Fal, Abderahim Aasfar, Ali Ouhssain, Hasnae Choukri, Abelaziz Smouni, Hicham El Arroussi

Abstract:

Heavy metals contamination is a major environmental concern around the world. It has a harmful impact on plant productivity and poses a serious risk to humans and animals health. In the present study, the effect of Microalgae Crude Extract (MCE) on tomato growth and nutrients uptake exposed to 2 mM Pb2+ and Cd2+ was investigated. In results, 2 mM Pb2+ and Cd2+ showed a significant reduction of tomatobiomass and perturbation in nutrients absorption. Moreover, MCE application in tomato plant exposed to Pb2+ and Cd2+ showed a significant enhancement of biomass compared to tomato plants under Pb2+ and Cd2+. On the other hand, MCE application favoured heavy metals accumulation in root and inhibited their translocation to shoot as phytostabilisation mechanism. Tomato plants showed biochemical responses to Pb2+ and Cd2+ stress with elevation of scavenging enzymes and molecules such as POD, CAT, SOD, Proline, and polyphenols, etc. In addition, the treatment by MCE showed a significant reduction level of the majority of these parameters. Furthermore, the metabolomic analysis revealed a significant change in important metabolites. Pb2+ and Cd2+ showed decrease in SFA and increase of UFA, VLFA, alkanes, alkenes, sterols, which known accumulated as tolerance and resistance mechanism to heavy metal (H.M) stress. However, MCE treatment showed the inverse of these response to return tomato plants to normal state and enhanced tolerance and resistance to heavy metal stress. In the present study, we emphasized that MCE can alleviate H.M stress, enhance tomato plant growth nutrients absorption and improve biochemical responses.

Keywords: microalgae crude extract, heavy metal stress, nutrient uptake, metabolomic analysis, solanum lycopersicum (Tomato), phytostabilisation

Procedia PDF Downloads 114