Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: LDPE

33 Analysis of the Torque Required for Mixing LDPE with Natural Fibre and DCP

Authors: A. E. Delgado, W. Aperador

Abstract:

This study evaluated the incidence of concentrated natural fibre, as well as the effects of adding a crosslinking agent on the torque when those components are mixed with low density polyethylene (LDPE). The natural fibre has a particle size of between 0.8-1.2mm and a moisture content of 0.17%. An internal mixer was used to measure the torque required to mix the polymer with the fibre. The effect of the fibre content and crosslinking agent on the torque was also determined. A change was observed in the morphology of the mixes using SEM differential scanning microscopy.

Keywords: WPC, DCP, LDPE, natural fibre, torque

Procedia PDF Downloads 271
32 Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder

Authors: Waris Piyaphon, Sathaphorn O-Suwankul, Kittima Bootdee, Manit Nithitanakul

Abstract:

Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added.

Keywords: composite material, plastic starch composite, polyethylene composite, PE grafted maleic anhydride

Procedia PDF Downloads 72
31 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures

Authors: Samir Al-Zobaidi

Abstract:

This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100°C. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.

Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation

Procedia PDF Downloads 219
30 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 236
29 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects

Authors: Vigen Barkhudaryan

Abstract:

The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.

Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations

Procedia PDF Downloads 174
28 An Approach to Study the Biodegradation of Low Density Polyethylene Using Microbial Strains of Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence in Different Media Form and Salt Condition

Authors: Monu Ojha, Rahul Rana, Satywati Sharma, Kavya Dashora

Abstract:

The global production rate of plastics has increased enormously and global demand for polyethylene resins –High-density polyethylene (HDPE), Linear low-density polyethylene (LLDPE) and Low-density polyethylene (LDPE) is expected to rise drastically, with very high value. These get accumulated in the environment, posing a potential ecological threat as they are degrading at a very slow rate and remain in the environment indefinitely. The aim of the present study was to investigate the potential of commonly found soil microbes like Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence for their ability to biodegrade LDPE in the lab on solid and liquid media conditions as well as in presence of 1% salt in the soil. This study was conducted at Indian Institute of Technology, Delhi, India from July to September where average temperature and RH (Relative Humidity) were 33 degrees Celcius and 80% respectively. It revealed that the weight loss of LDPE strip obtained from market of approximately 4x6 cm dimensions is more in liquid broth media than in solid agar media. The percentage weight loss by P. fluroscence, A. niger and B. subtilus observed after 80 days of incubation was 15.52, 9.24 and 8.99% respectively in broth media and 6.93, 2.18 and 4.76 % in agar media. The LDPE strips from same source and on the same were subjected to soil in presence of above microbes with 1% salt (NaCl: obtained from commercial table salt) with temperature and RH 33 degree Celcius and 80%. It was found that the rate of degradation increased in the soil than under lab conditions. The rate of weight loss of LDPE strips under same conditions given in lab was found to be 32.98, 15.01 and17.09 % by P. fluroscence, A. niger and B. subtilus respectively. The breaking strength was found to be 9.65N, 29N and 23.85 N for P. fluroscence, A. niger and B. subtilus respectively. SEM analysis conducted on Zeiss EVO 50 confirmed that surface of LDPE becomes physically weak after biological treatment. There was the increase in the surface roughness indicating Surface erosion of LDPE film. FTIR (Fourier-transform infrared spectroscopy) analysis of the degraded LDPE films showed stretching of aldehyde group at 3334.92 and 3228.84 cm-1,, C–C=C symmetric of aromatic ring at 1639.49 cm-1.There was also C=O stretching of aldehyde group at 1735.93 cm-1. N=O peak bend was also observed which corresponds to 1365.60 cm-1, C–O stretching of ether group at 1217.08 and 1078.21 cm-1.

Keywords: microbial degradation, LDPE, Aspergillus niger, Bacillus subtilus, Peudomonas fluroscence, common salt

Procedia PDF Downloads 43
27 Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products

Authors: Merve Sogancioglu, Esra Yel, Ferda Tartar, Nihan Canan Iskender

Abstract:

Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.

Keywords: biochar, co-pyrolysis, waste plastic, waste olive pomace

Procedia PDF Downloads 159
26 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 315
25 Mechanical and Microstructural Study of Photo-Aged Low Density Polyethylene (LDPE) Films

Authors: Meryem Imane Babaghayou, Abdelhafidi Asma

Abstract:

This study deals with the ageing of Blown extruded films of low-density polyethylene (LDPE), used for greenhouse covering. The LDPE have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. The microstructural changes in the films were analyzed by IRFT for different states of ageing. The mechanical characterization was performed on a uniaxial tensile apparatus. The mechanical properties such as Young's modulus, strain at break, and stress at break have been followed for different states of exposure time (0 to 6 months). The Climatic ageing of LDPE films shows the effect of ageing on the microstructural Plan which leads to: i) To an oxidation of the molecular chains. ii) To the formation of cross-linkings and breaking chains, which both of them are responsible for the mechanical behavior’s modifications of the material. Cross-links are in favor of strengthening of the mechanical properties at break (the increase of σr and εr). In other side, the chains breaking leads to a decrease of these properties. The increase in the Young's modulus also seems to be related to those structural changes since the cross-links increase the average molecular weight. Branchings and tangles are favorable pairs for the ductile nature of the material. And in other side, the chains breaking reduces the average molecular weight and therefore promotes the stiffening (following to morphological changes) so the material becomes fragile. The post-mortem analysis of the samples shows that the mechanical stress has an effect on the molecular structure of the material. Although if quantitatively the concentrations of different chemical species exchanges, from a quantitative point of view only the unsaturations raises the polemics of a possible microstructural modification induced by mechanical stress applied during the tensile test. Also, we recommend a more rigorous analysis with other means of investigation.

Keywords: low-density polyethylene, ageing, mechanical properties, IRTF

Procedia PDF Downloads 257
24 Use of Fish Gelatin Based-Films as Edible Pouch to Extend the Shelf-Life of Dried Chicken Powder and Chicken Oil

Authors: Soottawat Benjakul, Phakawat Tongnuanchan, Thummanoon Prodpran

Abstract:

Edible pouches made from fish gelatin film incorporated without and with palm oil (PO), basil essential oil (BEO) or oil mixture (M) were prepared and used to store chicken powder and chicken skin oil in comparison with nylon/low-density polyethylene (Nylon/LDPE) pouch during storage of 15 days. The moisture content of chicken powder packaged in pouches from fish gelatin films incorporated without and with various oils increased during 15 days of storage (p > 0.05). However, there was a non-significant change in moisture content of sample packaged in Nylon/LDPE pouch (p > 0.05). Samples packaged in pouches from fish gelatin films incorporated with oils had lower moisture content than those stored in pouch from gelatin film without oil added throughout the storage (p < 0.05). This coincided with the higher increases in darkness and yellowness for the latter. All samples packaged in pouches made from all films had the slight increase in PV, whereas a drastic increase in TBARS was observed for all samples during 15 days of storage. During 15 days of storage, chicken skin oil packaged in Nylon/LDPE pouch had higher TBARS and p-anisidine value than those stored in pouches made from fish gelatin, regardless of oil incorporated (p< 0.05). Therefore, pouches from gelatin film incorporated with oils could lower water migration and lipid oxidation in fat containing foods and oils.

Keywords: edible pouch, fish gelatin, quality changes, storage stability

Procedia PDF Downloads 134
23 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement

Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu

Abstract:

Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8, and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4, and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder Rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.

Keywords: crumb rubber, dry process, hot mix asphalt, wet process

Procedia PDF Downloads 239
22 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms

Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli

Abstract:

In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.

Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding

Procedia PDF Downloads 139
21 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 45
20 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger

Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust

Abstract:

This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.

Keywords: modeling, nanocomposite film, packaging, soy burger

Procedia PDF Downloads 180
19 Effect of Using Different Packaging Materials on Quality of Minimally Process (Fresh-Cut) Banana (Musa acuminata balbisiana) Cultivar 'Nipah'

Authors: Nur Allisha Othman, Rosnah Shamsudin, Zaulia Othman, Siti Hajar Othman

Abstract:

Mitigating short storage life of fruit like banana uses minimally process or known as fresh cut can contribute to the growing demand especially in South East Asian countries. The effect of different types of packaging material on fresh-cut Nipah (Musa acuminata balbisiana) were studied. Fresh cut banana cultivar (cv) Nipah are packed in polypropylene plastic (PP), low density polypropylene plastic (LDPE), polymer plastic film (shrink wrap) and polypropylene container as control for 12 days at low temperature (4ᵒC). Quality of physical and chemical evaluation such as colour, texture, pH, TA, TSS, and vitamin C were examined every 2 days interval for 12 days at 4ᵒC. Result shows that the PP is the most suitable packaging for banana cv Nipah because it can reduce respiration and physicochemical quality changes of banana cv Nipah. Different types of packaging significantly affected quality of fresh-cut banana cv Nipah. PP bag was the most suitable packaging to maintain quality and prolong storage life of fresh-cut banana cv Nipah for 12 days at 4ᵒC.

Keywords: physicochemical, PP, LDPE, shrink wrap, browning, respiration

Procedia PDF Downloads 61
18 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 27
17 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 119
16 Kinetic Study of Municipal Plastic Waste

Authors: Laura Salvia Diaz Silvarrey, Anh Phan

Abstract:

Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.

Keywords: kinetic, municipal plastic waste, pyrolysis, random scission

Procedia PDF Downloads 250
15 Investigation into the Possibility of Using Recycled Polyethelene to Replace Natural Rubber in the Production of Different Products

Authors: Otokiti Mojeed Jimoh

Abstract:

This work investigates the possibility of using recycled polyethylene LDPE as a base polymer in production of different products (shoe sole, foot mat, and many more) using carbon black as a filler to improve its mechanical properties, like hardness, tensile stress properties and elongation at break properties, from the result so far gotten there is a possibility that there is an increase in the mechanical properties of the sample compare to natural rubber sample.

Keywords: recycled polyethylene, base polymer, hardness, stress properties

Procedia PDF Downloads 273
14 Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite

Authors: Reza Fazaeli, Reza Eslami-Farsani, Hamid Targhagh

Abstract:

Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.

Keywords: nanocomposite, cobalt ferrite, low density polyethylene, microwave absorption

Procedia PDF Downloads 153
13 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks

Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry

Abstract:

Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.

Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science

Procedia PDF Downloads 192
12 Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements

Authors: Chayanon Boonyuid

Abstract:

This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements.

Keywords: plastic bags, bitumen, structural strength, permeability

Procedia PDF Downloads 19
11 New Formulation of FFS3 Layered Blown Films Containing Toughened Polypropylene and Plastomer with Superior Properties

Authors: S. Talebnezhad, S. Pourmahdian, D. Soudbar, M. Khosravani, J. Merasi

Abstract:

Adding toughened polypropylene and plastomer in FFS 3 layered blown film formulation resulted in superior dart impact and MD tear resistance along with acceptable tensile properties in TD and MD. The optimum loading of toughened polypropylene and plastomer in each layer depends on miscibility of polypropylene in polyethylene medium, mechanical properties, welding characteristics in bags top and bottoms and friction coefficient of film surfaces. Film property tests and efficiency of FFS machinery during processing in industrial scale showed that about 4% loading of plastomer and 16% of toughened polypropylene (reactor grade) in middle layer and loading of 0-1% plastomer and 5-19% of toughened polypropylene in other layers results optimum characteristics in the formulation based on 1-butene LLDPE grade with MFR of 0.9 and LDPE grade with MFI of 0.3. Both the plastomer and toughened polypropylene had the MFI of blow 1 and the TiO2 and processing aid masterbatches loading was 2%. The friction coefficient test results also represented the anti-block masterbatch could be omitted from formulation with adding toughened polypropylene due to partial miscibility of PP in PE which makes the surface of films somewhat bristly.

Keywords: FFS 3 layered blown film, toughened polypropylene, plastomer, dart impact, tear resistance

Procedia PDF Downloads 292
10 Development of Biodegradable Plastic as Mango Fruit Bag

Authors: Andres M. Tuates Jr., Ofero A. Caparino

Abstract:

Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper.

Keywords: cassava starch, PBS, biodegradable, chemical, mechanical properties

Procedia PDF Downloads 158
9 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology

Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa

Abstract:

A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.

Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC

Procedia PDF Downloads 306
8 Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 148
7 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application

Authors: Adeshina Fadeyibi

Abstract:

Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.

Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging

Procedia PDF Downloads 16
6 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 22
5 Drying Effect on the Proximate Composition and Functional Properties of Cocoyam Flour

Authors: K. Maliki, A. Ajayi, O. M. Makanjuola, O. J. Adebowale

Abstract:

Cocoyam is herbaceous perennial plant which belongs to the family Araceae and genus xanthosoma or cococasia is mostly cultivated as food crop. It is very rich in Vitamin B6, Magnesium and also in dietary fiber. Matured cocoyam is eaten boiled, Fried or roasted in Nigeria. It can also be dried and used to make flour. Food drying is a method of food preservation in which food is dried, thus inhibit the growth of bacteria yeast and mold through the removal of water. Drying effect on the proximate composition and functional properties of cocoyam flour were investigated. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, sliced into 0.3mm thickness blanch in boiling water at 100°C for 15 minutes and dried using sun drying oven and cabinet dryers. The blanched slices were divided into three lots and were subjected to different drying methods. The dried cocoyam slices were milled into flour using Apex mill and packed into Low Density Polyethylene Film (LDPE) 75 Micron 4 thickness and kept for four months under ambient temperature before analysis. The results showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 7.35% to 13.89%, 1.45% to 3.3%, 1.2% to 3.41%, 2.1% to 3.1%, 6.30% to 9.1% and 66% to 82% respectively. The functional properties of the cocoyam flour ranged from 1. 65ml/g to 4.24ml/g water absorption capacity, 0.85ml/g to 2.11ml/g oil absorption capacity 0.56ml/g and 0.78ml/g bulk density and 4.91% to 6.80% swelling capacity. The result showed that there was not significant difference (P ≥ 0.5) across the various drying methods used. Cabinet drying method was found to have the best quality characteristic values than the other drying methods. In conclusion, drying of cocoyam could be used for value addition and provide extension to shelf-life.

Keywords: cocoyam flour, drying, cabinet dryer, oven dryer

Procedia PDF Downloads 133
4 Studies on the Proximate Composition and Functional Properties of Extracted Cocoyam Starch Flour

Authors: Adebola Ajayi, Francis B. Aiyeleye, Olakunke M. Makanjuola, Olalekan J. Adebowale

Abstract:

Cocoyam, a generic term for both xanthoma and colocasia, is a traditional staple root crop in many developing countries in Africa, Asia and the Pacific. It is mostly cultivated as food crop which is very rich in vitamin B6, magnesium and also in dietary fiber. The cocoyam starch is easily digested and often used for baby food. Drying food is a method of food preservation that removes enough moisture from the food so bacteria, yeast and molds cannot grow. It is a one of the oldest methods of preserving food. The effect of drying methods on the proximate composition and functional properties of extracted cocoyam starch flour were studied. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, washed and grated. The starch in the grated cocoyam was extracted, dried using sun drying, oven and cabinet dryers. The extracted starch flour was milled into flour using Apex mill and packed and sealed in low-density polyethylene film (LDPE) 75 micron thickness with Nylon sealing machine QN5-3200HI and kept for three months under ambient temperature before analysis. The result showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 6.28% to 12.8% 2.32% to 3.2%, 0.89% to 2.24%%, 1.89% to 2.91%, 7.30% to 10.2% and 69% to 83% respectively. The functional properties of the cocoyam starch flour ranged from 2.65ml/g to 4.84ml/g water absorption capacity, 1.95ml/g to 3.12ml/g oil absorption capacity, 0.66ml/g to 7.82ml/g bulk density and 3.82% to 5.30ml/g swelling capacity. Significant difference (P≥0.5) was not obtained across the various drying methods used. The drying methods provide extension to the shelf-life of the extracted cocoyam starch flour.

Keywords: cocoyam, extraction, oven dryer, cabinet dryer

Procedia PDF Downloads 174