Search results for: fuzzy numbers
1016 Improving Working Memory in School Children through Chess Training
Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy
Abstract:
Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess training, cognitive development, executive functions, school children, working memory
Procedia PDF Downloads 2631015 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 4441014 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System
Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha
Abstract:
Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time
Procedia PDF Downloads 5771013 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 5861012 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.Keywords: decision support systems, early warning systems, flash flood, natural hazard
Procedia PDF Downloads 3731011 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules
Authors: Gagandeep Singh, Navdeep Singh
Abstract:
Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.Keywords: WSN, I-Leach, MATLAB, sensor
Procedia PDF Downloads 2751010 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics
Authors: M. Jathaveda, Joben Leons, G. Vidya
Abstract:
Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.Keywords: stability, typical reentry body, subsonic, static and dynamic
Procedia PDF Downloads 1161009 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 671008 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow
Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather
Abstract:
The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.Keywords: agglomeration, channel flow, DEM, LES, turbulence
Procedia PDF Downloads 3171007 Assessment of Marketing and Financial Activities of Night Markets in the Nigerian Economy
Authors: Adedeji Tejumola Olugboja
Abstract:
Night markets are physical locations in residential neighbourhoods where market parties interact. It is a kind of market where marketing activities commence by 6pm until after midnight. The problem of the study is to assess marketing activities in the night markets. Specific objectives for this study include determining volume of business activities, numbers of market parties etc in the selected night markets. The purposive sampling technique is adopted for this study and the four night markets in the area of study are selected as sample: Aggregate of 173 retailers and an average of 2583 consumers daily operate in these night markets. The use of tables, simple percentage and descriptive statistics were employed for data analysis and presentation. Findings revealed volume of marketing activities, sales per night, profit per night and savings per day in each of these night markets. Government should erect street lights and repair damaged ones in these night markets to make night markets more lucrative.Keywords: marketing activities, night markets, Nigerian economy
Procedia PDF Downloads 2191006 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software
Authors: Marine Segui, Ruxandra Mihaela Botez
Abstract:
OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.Keywords: aerodynamic, coefficient, cruise, improving, longitudinal, openVSP, solver, time
Procedia PDF Downloads 2351005 Comparative Analysis of Traditional and Modern Roundabouts Using Sidra Intersection
Authors: Amir Mohammad Parvini, Amir Masoud Rahimi
Abstract:
Currently, most parts of the world have shifted from traditional roundabouts to modern roundabouts with respect to the role of roundabouts in reducing accidents, increasing safety, lowering the maintenance costs compared to traffic circles with their improper functional and safety experiences. In this study, field data collected from a current traditional roundabout was analyzed by the software AIMSUN and the obtained numbers were recorded. The modern roundabout was designed by changes in the traditional one, considering the geometric standards listed in regulations. Then, the modern roundabout was analyzed by applying a heterogeneous traffic by a micro-simulation software SIDRA (5.1). The function, capacity, and safety of the roundabout were analyzed assuming the superiority of modern roundabouts and acceptable LOS. The obtained results indicate that the function, capacity, and safety of modern roundabouts are better than traditional ones.Keywords: traditional roundabout, traffic circles, modern roundabout, AIMSUN, SIDRA
Procedia PDF Downloads 3991004 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number
Authors: Hichem Boulechfar, Mahfoud Djezzar
Abstract:
Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.Keywords: double diffusive, natural convection, porous media, elliptical annulus
Procedia PDF Downloads 2101003 From Scalpel to Leadership: The Landscape for Female Neurosurgeons in the UK
Authors: Anda-veronica Gherman, Dimitrios Varthalitis
Abstract:
Neurosurgery, like many surgical specialties, undoubtedly exhibits a significant gender gap, particularly in leadership positions. While increasing women representation in neurosurgery is important, it is crucial to increase their presence in leadership positions. Across the globe and Europe there are concerning trends of only 4% of all neurosurgical departments being chaired by women. This study aims to explore the situation regarding gender disparities in leadership in the United Kingdom and to identify possible contributing factors as well as discussing future strategies to bridge this gap. Methods: A literature review was conducted utilising PubMed as main database with search keywords including ‘female neurosurgeon’, ‘women neurosurgeon’, ‘gender disparity’, ‘leadership’ and ‘UK’. Additionally, a manual search of all neurosurgical departments in the UK was performed to identify the current female department leads and training director leads. Results: The literature search identified a paucity of literature addressing specifically leadership in female neurosurgeons within the UK, with very few published papers specifically on this topic. Despite more than half of medical students in the UK being female, only a small proportion pursue a surgical career, with neurosurgery being one of the least represented specialties. Only 27% of trainee neurosurgeons are female, and numbers are even lower at a consultant level, where women represent just 8%.Findings from published studies indicated that only 6.6% of leadership positions in neurosurgery are occupied by women in the UK. Furthermore, our manual searches across UK neurosurgical departments revealed that around 5% of department lead positions are currently held by women. While this figure is slightly higher than the European average of 4%, it remains lower compared to figures of 10% in other North-West European countries. The situation is slightly more positive looking at the training directors, with 15% being female. Discussion: The findings of this study highlight a significant gender disparity in leadership positions within neurosurgery in the UK, which may have important implications, perpetuating the lack of diversity on the decision-making process, limiting the career advancement opportunities of women and depriving the neurosurgical field from the voices, opinions and talents of women. With women representing half of the population, there is an undeniable need for more female leaders at the policy-making level. There are many barriers that can contribute to these numbers, including bias, stereotypes, lack of mentorship and work-like balance. A few solutions to overcome these barriers can be training programs addressing bias and impostor syndrome, leadership workshops tailored for female needs, better workplace policies, increased in formal mentorship and increasing the visibility of women in neurosurgery leadership positions through media, speaking opportunities, conferences, awards etc. And lastly, more research efforts should focus on the leadership and mentorship of women in neurosurgery, with an increased number of published papers discussing these issues.Keywords: female neurosurgeons, female leadership, female mentorship, gender disparities
Procedia PDF Downloads 301002 Flushing Model for Artificial Islands in the Persian Gulf
Authors: Sawsan Eissa, Momen Gharib, Omnia Kabbany
Abstract:
A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection.Keywords: hydrodynamics, flushing, delft 3d, Persian Gulf, artificial islands.
Procedia PDF Downloads 611001 Encouraging Girl-Child Education for Better Reproductive Health in Nigeria
Authors: Alikeju F. Maji
Abstract:
The role of girl child education on reproductive health of any nation cannot be over emphasized. Today this has become a global concern because of the awareness that girl child education has direct proven impact on reproductive health and sustainable development of a national. Thus, this paper attempts to re-emphasize and re-awaken the mind of humanity on the undisputable importance of girl-child education as a tool for improving reproductive health in Nigeria. The paper further examine that despite government’s effort in attaining education for all by the year 2015, the numbers of girls attending schools remain abysmally low in Nigeria. The paper noted that if the trend persists, personal health of women and their contribution to national development will reduce. The paper recommends that women in Nigeria should be availed with good educational opportunities to enhance their improved reproductive health, and greater participating in national development.Keywords: girl-child education, reproductive health, sustainable development, personal health
Procedia PDF Downloads 3611000 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 644999 Gamification: A Guideline to Design an Effective E-Learning
Authors: Rattama Rattanawongsa
Abstract:
As technologies continue to develop and evolve, online learning has become one of the most popular ways of gaining access to learning. Worldwide, many students are engaging in both online and blended courses in growing numbers through e-learning. However, online learning is a form of teaching that has many benefits for learners but still has some limitations. The high attrition rates of students tend to be due to lack of motivation to succeed. Gamification is the use of game design techniques, game thinking and game mechanics in non-game context, such as learning. The gamifying method can motivate students to learn with fun and inspire them to continue learning. This paper aims to describe how the gamification work in the context of learning. The first part of this paper present the concept of gamification. The second part is described the psychological perspectives of gamification, especially motivation and flow theory for gamifying design. The result from this study will be described into the guidelines for effective learning design using a gamification concept.Keywords: gamification, e-learning, motivation, flow theory
Procedia PDF Downloads 524998 Remote Patient Monitoring for Covid-19
Authors: Launcelot McGrath
Abstract:
The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management
Procedia PDF Downloads 108997 Interpretation and Clustering Framework for Analyzing ECG Survey Data
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 470996 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 558995 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering
Procedia PDF Downloads 715994 Coevaluations Software among Students in Active Learning Methodology
Authors: Adriano Pinargote, Josue Mosquera, Eduardo Montero, Dalton Noboa, Jenny Venegas, Genesis Vasquez Escuela
Abstract:
In the framework of Pre University learning of the Polytechnic School of the Litoral, Guayaquil, Ecuador, the methodology of Active Learning (Flipped Classroom) has been implemented for applicants who wish to obtain a quota within the university. To complement the Active Learning cycle, it has been proposed that the respective students influence the qualification of their work groups, for which a web platform has been created that allows them to evaluate the performance of their peers through a digital coevaluation that measures through statistical methods, the group and individual performance score that can reflect in numbers a weighting score corresponding to the grade of each student. Their feedback provided by the group help to improve the performance of the activities carried out in classes because the note reflects the commitment with their classmates shown in the class, within this analysis we will determine if this implementation directly influences the performance of the grades obtained by the student.Keywords: active learning, coevaluation, flipped classroom, pre university
Procedia PDF Downloads 139993 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 80992 Analysis of ECGs Survey Data by Applying Clustering Algorithm
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 351991 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 181990 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss
Procedia PDF Downloads 199989 Performance Evaluation of Extruded-type Heat sinks Used in Inverter for Solar Power Generation
Authors: Jung Hyun Kim, Gyo Woo Lee
Abstract:
In this study, heat release performances of the three extruded-type heat sinks can be used in the inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8 m2. The heat release performances of E-38, E-47, and E-76 heat sinks were measured as 79.6, 81.6, and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of the mass flow rates caused by different cross-sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.Keywords: solar Inverter, heat sink, forced convection, heat transfer, performance evaluation
Procedia PDF Downloads 467988 The Role of Phytoremediation in Reclamation of Soil Pollution and Suitability of Certain Ornamental Plants to Phytoremediation
Authors: Bahriye Gülgün, Gökhan Balik, Şükrü Dursun, Kübra Yazici
Abstract:
The main reasons such as economic growth of society increase of the world population and rapid changes of industrialization cause the amount and the types of pollutants to increase over time. Soil pollution is the typical side effect of industrial activities. As a result of industrial activities, there are large amounts of heavy metal emission every year. Heavy metals are one of the highest pollution sources according to the soil pollution aspect. The usage of hyperaccumulator plants to clean heavy metal polluted soils and the selection of plants for phytoremediation gain importance recently. There are limited numbers of researches on the ornamental plant types of phytoremediation thus; researches on this subject are important. This research is prepared based on the ornamental plant types with phytoremediation abilities.Keywords: phytoremediation, ornamental plants, landscape reclamation, soil reclamation, environmental pollution
Procedia PDF Downloads 410987 Impact of Pharmacist-Led Care on Glycaemic Control in Patients with Type 2 Diabetes: A Randomised-Controlled Trial
Authors: Emmanuel A. David, Rebecca O. Soremekun, Roseline I. Aderemi-Williams
Abstract:
Background: The complexities involved in the management of diabetes mellitus require a multi-dimensional, multi-professional collaborative and continuous care by health care providers and a substantial self-care by the patients in order to achieve desired treatment outcomes. The effect of pharmacists’ care in the management of diabetes in resource-endowed nations is well documented in literature, but randomised-controlled assessment of the impact of pharmacist-led care among patients with diabetes in resource-limited settings like Nigeria and sub-Saharan Africa countries is scarce. Objective: To evaluate the impact of Pharmacist-led care on glycaemic control in patients with uncontrolled type 2 diabetes, using a randomised-controlled study design Methods: This study employed a prospective randomised controlled design, to assess the impact of pharmacist-led care on glycaemic control of 108 poorly controlled type 2 diabetic patients. A total of 200 clinically diagnosed type 2 diabetes patients were purposively selected using fasting blood glucose ≥ 7mmol/L and tested for long term glucose control using Glycated haemoglobin measure. One hundred and eight (108) patients with ≥ 7% Glycated haemoglobin were recruited for the study and assigned unique identification numbers. They were further randomly allocated to intervention and usual care groups using computer generated random numbers, with each group containing 54 subjects. Patients in the intervention group received pharmacist-structured intervention, including education, periodic phone calls, adherence counselling, referral and 6 months follow-up, while patients in usual care group only kept clinic appointments with their physicians. Data collected at baseline and six months included socio-demographic characteristics, fasting blood glucose, Glycated haemoglobin, blood pressure, lipid profile. With an intention to treat analysis, Mann-Whitney U test was used to compared median change from baseline in the primary outcome (Glycated haemoglobin) and secondary outcomes measure, effect size was computed and proportion of patients that reached target laboratory parameter were compared in both arms. Results: All enrolled participants (108) completed the study, 54 in each study. Mean age was 51±11.75 and majority were female (68.5%). Intervention patients had significant reduction in Glycated haemoglobin (-0.75%; P<0.001; η2 = 0.144), with greater proportion attaining target laboratory parameter after 6 months of care compared to usual care group (Glycated haemoglobin: 42.6% vs 20.8%; P=0.02). Furthermore, patients who received pharmacist-led care were about 3 times more likely to have better glucose control (AOR 2.718, 95%CI: 1.143-6.461) compared to usual care group. Conclusion: Pharmacist-led care significantly improved glucose control in patients with uncontrolled type 2 diabetes mellitus and should be integrated in the routine management of diabetes patients, especially in resource-limited settings.Keywords: glycaemic control , pharmacist-led care, randomised-controlled trial , type 2 diabetes mellitus
Procedia PDF Downloads 121